

BOOSTING WITH ORIGINAL AND CLUSTERED

CATEGORICAL FEATURES FOR MACHINE LEARNING ON

LARGE DATASETS

Giovanni Bellio

Auburn University at Montgomery

2022

BOOSTING WITH ORIGINAL AND CLUSTERED CATEGORICAL FEATURES

FOR MACHINE LEARNING ON LARGE DATASETS

by

Giovanni Bellio

A thesis submitted to the Graduate Faculty of

Auburn University at Montgomery

in partial fulfillment of the

requirements for the Degree of

Master of Science

Ill

Computer Science

Montgomery, Alabama

29 July 2022

Approved by

Digitally signed by Olcay Randy D.

Russell
01 K Kursun

Cay UrSUn Date: 2022.07.27
23:12:51 -05'00'

Digitally signed by Randy
D. Russell
Date: 2022.07.28
19:10:24 -05'00'

Dr. Olcay Kursun

Thesis Director

Randy Russell

Thesis Co-Director
Digitally signed by Zhimin L ■ w Digitally signed by Lei Wu

Zh. · G
Gao

lmln 80 Date: 2022.07.28
13:25:16 +08'00'

Dr. Zhimin Gao

First Reader

e I U Date: 2022.07.28
15:08:45 -05'00'

Dr. Lei Wu

Second Reader

Digitally signed by
'IV) 1J i ID (J n Matthew Ragland
/ / � /� Date: 2022.07.29

11 :18:38 -05'00'

Dr. Matthew Ragland

Associate Provost

ACKNOWLEDGMENTS

I want to express my deepest appreciation to my thesis advisor, Dr. Olcay Kursun,

Department of Computer Science at Auburn University at Montgomery. He was always

available and supportive, willing to teach new concepts and algorithms needed for this

thesis study every time we met.

Dr. Kursun provided me with some of the datasets, computer programs and

algorithms as part of the NSF grant 2003740 on Hyperspectral Cloud Segmentation

together with Professors Randy Russell, Luis Cueva Parra, and Semih Dinc.

This work was supported, in part, by the National Science Foundation under

Grant No. 2003740.

I would also like to extend my gratitude to all the faculty at Auburn University at

Montgomery. Their teaching throughout the completion of my Undergraduate and

Graduate degrees was fundamental for my academic development, which inspired me to

continue learning and pursuing a career in the area of Computer Science. I would like to

specially thank Dr. Lei Wu, Dr. Zhimin Gao, and Dr. Semih Dinc for all their guidance

during these years at AUM.

 Finally, I would like to thank my family for all their endless support during my

life. Everything I have achieved has been possible because of them, so for that I will be

forever grateful.

TABLE OF CONTENTS

ABSTRACT .. 1

CHAPTER 1: INTRODUCTION ... 3

CHAPTER 2: DATA .. 7

2.1 MOVIE RATINGS ... 8

2.1.1 DATA EXTRACTION ... 8

2.1.2 DATA STATISTICS .. 10

2.2 HYPERSPECTRAL IMAGING ... 19

CHAPTER 3: MACHINE LEARNING MODEL .. 25

3.1 MOVIE RATINGS ... 25

3.1.1 DIRECT-CATBOOST APPROACH ... 25

3.1.2 MEAN-BASED APPROACH .. 28

3.1.3 WORD EMBEDDING APPROACH ... 32

3.1.4 MODEL ROADMAP ... 35

3.2 HYPERSPECTRAL IMAGING ... 36

3.2.1 MODEL ROADMAP ... 39

CHAPTER 4: EXPERIMENTAL RESULTS .. 40

4.1 MOVIE RATINGS RESULTS ... 40

4.1.1 DIRECT-CATBOOST APPROACH ... 40

4.1.2 MEAN-BASED APPROACH .. 41

4.1.3 WORD-EMBEDDING APPROACH .. 41

4.2 HYPERSPECTRAL IMAGING RESULTS ... 42

CHAPTER 5: CONCLUSION ... 44

REFERENCES ... 45

LIST OF TABLES

Table 2.1. Initial table of 14 columns of the movie ratings dataset 18

Table 2.2. The class names and their respective number of pixels of the Indian Pines

dataset ... 20

Table 2.3. The class names and the number of pixels in each class of the Salinas dataset

... 22

Table 3.1. Table of genres ready for one-hot encoding .. 26

Table 3.2. Table of genres after one-hot encoding ... 26

Table 3.3 Initial table of values for the Mean-based approach ... 29

Table 3.4 Table containing only actors and directors before transforming values 30

Table 3.5 Table containing only actors and directors after transforming values 30

Table 3.7. Initial table of values for the Word-embedding approach 33

Table 3.8. Table of values after word-embedding vectorization 33

Table 4.1. Sensitivity of the hyperparameters (various K for K-means, window length and

window stride) for Salinas dataset. ... 42

Table 4.2. Comparisons on HSI classification results .. 43

LIST OF FIGURES

Figure 2.2. Movies per ratings in the ratings column ... 11

Figure 2.3. Distribution by release date in the year column ... 11

Figure 2.4. Top 25 actors count in the actor1 column .. 12

Figure 2.5. Top 25 actors count in the actor2 column .. 13

Figure 2.6. Top 25 actors count in the actor3 column .. 13

Figure 2.7. Top 25 actors count in the actor4 column .. 14

Figure 2.8. Distribution of genres in the genre1 column .. 15

Figure 2.9. Distribution of genres in the genre2 column .. 15

Figure 2.10. Distribution of genres in the genre3 column .. 16

Figure 2.11. Top 25 directors count in the director_name column 17

Figure 2.12. Distribution of length in minutes in the runtime column 17

Figure 2.13. Tables X and Y of the movie ratings dataset .. 18

Figure 2.14. A render of a hyperspectral image collected by the AUM-Hyperspectral

team. .. 19

Figure 2.15. An RGB render of the Indian Pines HSI image ... 21

Figure 2.16. Ground truth image of the Indian Pines HSI image 21

Figure 2.17. Wavelength channel and reflectance values of 5 class labels from the Salinas

dataset. .. 23

Figure 2.18. Wavelength channel and reflectance values of 5 different pixels for the

Fallow class-label.. 23

Figure 2.19. An RGB render of the Salinas HSI image .. 24

Figure 2.20. Ground truth image of the Indian Pines HSI image 24

Figure 3.1. Pseudocode for the Direct-Catboost approach program 28

Figure 3.2. Pseudocode for the Mean-based approach program 31

Figure 3.3. Pseudocode for the Word-embedding approach program 34

Figure 3.4. Ratings Predictor Application roadmap ... 35

Figure 3.5. Signatures of clear sky (SKY), thin clouds (THIN), clouds (CLD), and dark

clouds (DARK) in 462 bands of the HSI images being collected by the AUM

Hyperspectral team. .. 37

Figure 3.6. Clustered-Shifting-Window Boosting Algorithm for HSI dataset 38

Figure 3.7. HSI Pixel Predictor Roadmap .. 39

Figure 4.1. Scatterplot result for the Direct-Catboost approach 40

Figure 4.2. Scatterplot result for the Mean-based approach ... 41

Figure 4.3. Scatterplot result for the Word-embedding approach 42

ABSTRACT

Compared to developing single models, ensemble learning algorithms that utilize

decision trees (DTs) and boosting have received increasing interest due to many features

including but not limited to their fast and accurate predictions, robustness to noise, ability

to deal with diverse features such as both numerical and categorical features, having

fewer parameters to optimize, and having a rule-based interpretability using if-then-like

rules. Gradient/Adaptive boosting methods based on decision trees, such as CatBoost and

AdaBoost, can handle diverse data types and solve a wide range of machine learning

problems involving categorical variables. The thrust of this thesis is to develop machine

learning algorithms based on such boosting algorithms and test their applicability and

prediction performances on several datasets. These algorithms are showcased in this

thesis with two types of data. One is the Movie Ratings dataset and the other one is three

Hyperspectral Image (HSI) datasets for pixel classification. These two types of data

consist of very different characteristics.

Movie Ratings dataset is composed of both numerical and categorical features

(such as genre and actors) and requires a regression machine learning model to predict

the ratings. Moreover, some of the categorical features in the Movie Ratings dataset have

high cardinality (having a large number of categories, such as the main actor of the

movie).

On the other hand, in the Hyperspectral Image (HSI) domain, there are high

number of numerical features and a classification machine learning model is required to

predict classes of pixels. There are vegetation vs. soil types of classes in two of the HSI

2

datasets used and there are cloud-classes (e.g., dark vs. thin clouds) in the third HSI

dataset. Interestingly, HSI dataset does not contain any categorical features but the thesis

proposes and demonstrates that creation of categorical features using clustering

algorithms proves very useful in enriching the data representation for categorical-

boosting ensembles.

For all the datasets used in this thesis, gradient boosting methods performed

favorably to the benchmark algorithms. This thesis presents a method that can be further

developed for achieving dimensionality reduction, high-accuracy classification, and

implementation in high-performance computing frameworks for hyperspectral image

classification.

3

CHAPTER 1: INTRODUCTION

As the performance of machine learning (ML) models perform differently on

different dataset, there is no guaranteed single best off-the-shelf machine learning

algorithm for a given learning task/dataset, which is also known as “No Free Lunch

Theorem” in machine learning (Alpaydin 2014). Nevertheless, ensemble methods are

known to achieve low variance; that is, compared to using a single model, an ensemble

method has smaller deviation in the learned functions from one training run to another.

Boosting is a meta-learning algorithm and it can combine classifiers to create powerful

ensembles. Popular implementations of boosting such as AdaBoost, XGBoost, and

CatBoost uses decision trees (shallow decision trees or decision tree stumps) and

compared to single ML models. Decision trees are data structures that repeatedly divide

the dataset into smaller subsets based on applying thresholds on features with the goal of

minimizing impurity (until maximum depth is reached or one class left in the

branch/leaf). Boosting methods enjoy robustness to noise, ability to deal with both

numerical and categorical features, having fewer parameters to optimize, and having a

rule-based interpretability using if-then-like rules (Samat et al. 2021; Fernandez-Delgado

et al. 2014).

In this thesis, boosting algorithms are studied and their feasibility is tested on

some challenging datasets. One of the datasets is the Movie Ratings dataset, which is

composed of both numerical (such as year and duration of the movie) and categorical

features (such as genre and actor names). It requires a regression model for predicting the

movie ratings from these features. Moreover, there are a variety of genres available in the

categorical genre feature but the cardinality of the actor feature is much greater. There are

4

a much larger variety of distinct categories for the actor-related fields; each actor name is

a different category and there are many actors in the dataset.

The other datasets are from the field of Hyperspectral Imaging (HSI). The HSI

datasets are composed of large HSI images with the task of classification of individual

pixels. Typically, for every HSI image a ground truth image is provided that contains the

class labels of individual pixels. An exemplary application could be classification of

individual pixels into various types of vegetation/soils/fields/trees, and another

application could be classification of individual pixels into dark, regular, or thin clouds

versus clear sky. In HSI datasets, there are high number of numerical features and a

classification machine learning model is required. Typically, HSI datasets contain several

hundred of numerical features (each one corresponding to reflectivity/irradiances in a

different wavelength) but they do not contain any categorical features. However, boosting

methods can take advantage of a preprocessing proposed in this thesis to create new

categorical features using clustering algorithms for enriching the data representation, and

thus increasing the classification accuracy and reducing dimensionality.

CatBoost was the first boosting algorithm used in this thesis. In the early phases

of the thesis, CatBoost was identified to be an efficient method needed to deal with the

categorical features available faced in predicting the movie ratings. “CatBoost” name

comes from two words “Category” and “Boosting”. CatBoost was developed by Yandex

and released to the open-source community in 2017 and became popular primarily due to

its ability for handling categorical features without overfitting. It can also be trained very

fast on GPU. For this thesis, CatBoost’s Python programming language implementation

was used with the following easy set up command: “pip install catboost”. As described

5

above, in this thesis, CatBoost was tested with different datasets. The first task at hand

deals with movie ratings prediction using the Movie Rating dataset (Section 2.1), which

contains several categorical fields that were directly extracted from IMDb’s official

website. This work proposes the idea of predicting ratings for movies before their release,

which is a feature yet to release on current applications. To achieve this, several

approaches are proposed (Section 3.1), where each of these use the categorical data with

different methods in order to calculate accurate prediction values results with a high

coefficient of correlation (Section 4.1) using CatBoost as its model regressor.

The second task at hand refers to the prediction of pixel values of hyperspectral

images. In Hyperspectral Imaging (HSI), a pixel is characterized by a high number of

spectral channels/bands, thus allowing accurate and efficient classification of individual

pixels (Sellami et al. 2019; Grana et al. 2018; GISGeography 2022; Kursun et al. 2021).

HSI cameras vary in the number of wavelengths (bands) they have, but typically in an

HSI dataset, every pixel is represented by several hundreds of bands. The spectral

signature in those bands (reflectivity/irradiances in different wavelengths) for a pixel can

be used as a powerful predictor of the class-label (i.e., for classification of that individual

pixel). Since different classes have different certain hyperspectral signatures, HSI can

serve as an important pattern recognition goal, for example, for scanning a large field by

taking aerial pictures. In such an HSI application, single pixel classification can help

monitor the state of crops (wet/dry/rotten) or to find irregularities such as a metal object

camouflaged in the field. This thesis proposes a categorical-boosting-classification

method that utilizes CatBoost (Section 3.2) as a viable solution to the pixel classification

problem. This dataset is currently being extracted by the AUM-Hyperspectral team

6

(Kursun et al. 2022). Therefore, it was not possible to test the proposed algorithm on the

finalized dataset. Consequently, to overcome this inconvenience, this work used two

benchmark HSI datasets, Indian Pines and Salinas, as presented in Section 2.2. The

experimental results are presented in Section 4.2.

Moreover, Hyperspectral imaging can potentially be of great benefit for modern

applications. In the case of hyperspectral sky imaging (such as the AUM-Hyperspectral

team’s dataset), a potential application is the development of an automated ground-based

system for detecting the amount and type of cloudiness. Such systems could improve the

spatial and temporal resolution of cloud information vital to understanding Earth’s

climate. In the case of hyperspectral imaging of the Earth’s surface (such as the Indian

Pines and Salinas datasets) the images yield important information on land use and

agricultural productivity.

The thesis is organized as follows. The datasets, including data extraction and

data statistics, is described in Chapter 2. The proposed machine learning models using

categorical boosting are described in Chapter 3. The experimental results on the datasets

are presented in Chapter 4. Finally, the conclusions and future work are discussed in

Chapter 5.

7

CHAPTER 2: DATA

This chapter provides a thorough explanation on how the data used in this thesis

was obtained, and what each of the feature columns in the datasets represent. Two

sections will be discussed in this chapter: The Movie Ratings dataset on Section 2.1, and

the Hyperspectral Imaging datasets on Section 2.2. Every dataset will be converted to two

tables: table X and table Y. In machine learning the goal is to predict values from table Y

after training the model with values from table X (Pedrosa et al. 2011). An example of

this is visualized on Figure 2.1 where the feature matrix (X) is a table where there are D

number of columns and N number of rows from the dataset, and the target vector (Y)

which is a table with a single column (not present on table X) with N number of rows.

Figure 2.1. Visualization of mapping/learning task of machine learning as a function from

table X (the training dataset with N examples and D features) to table Y (the class-labels

of those N training examples)

8

2.1 MOVIE RATINGS

This dataset consisting of 21,508 sentences and 14 fields of mainly categorical

data describes information about several movies released from 1912 until 2021. The

objective of this work was to utilize columns of said dataset, such as actors and genres, to

train the CatBoost machine learning algorithm and be able to predict movie ratings as

accurately as possible (Gulin et al. 2018).

2.1.1 DATA EXTRACTION

The data was obtained from the International Movie Database official’s website

(IMDb) where there is available data free of access (“IMDb datasets”, 2021). Several

TSV (tab separated format) files can be downloaded by the public in this site, where the

following tsv files: title_basics, title_principals, title_ratings, and name_basics were

obtained to start the creation the Movie Ratings dataset. After the files were downloaded,

the next step was preprocessing the data to have it machine-learning-ready for our

program, which meant that a lot of irrelevant data had to be erased. For every file, each

column was considered for keeping in the final dataset, but only those that seemed more

relevant for predicting ratings of movies were kept. For example, some fields that were

not considered were: titleType, originalTitle, isAdult, endYear from the title_basics file.

On another file called title_principals, some fields that were also unconsidered were:

category, job, and characters. Lastly, on the name_basics file, the removed fields

were: birthYear, deathYear, primaryProfession, and knownForTitles. After manually

deleting the unnecessary columns, all the data that was needed was available, but it was

separated and spread across four different files. Therefore, to only obtain the final table

9

result in one file, a database was created in order to store and combine the data on all of

the files.

The data from each of the files was inserted into tables in a database (Oracle

MySQLWorkBench 2021), and after some select commands were implemented, it was

possible to obtain queries that would contain the desired final data. The query result that

consisted of everything that was needed was a table which was imported into a Python

program in a CSV (comma separated format) file (Van Rossum et al. 2009). This table

contained 695,974 rows and 10 columns, which consisted of title_id, rating, numVotes,

title_name, year, genres, person_id, person_job, person_name, and runtime.

Although having this large amount of data was promising, it was necessary to do

some further processing since some movies had missing values in all the genres and year

of release columns. Therefore, every movie that had these missing values was discarded.

This resulted on the remaining movies having a high number of votes, which proved that

movies that were more popular had more reliable data. On top of this, various column

values in the table were re-arranged so that the data could later be processed by

algorithms in a more effective way. An example of this was making sure that each movie

would appear in only one row, instead of multiple times. In the original table, for every

different person that participated in a movie, a whole new row was needed which would

lead into the same movie appearing in multiple rows. Therefore, finding a way to fit

every single person that worked in a movie in just one row was an important step in the

setup of the dataset.

10

The concluding dataset consisted of 21,508 rows and the following 14 columns:

title_id, title_name, rating, year, numVotes, genre1, genre2, genre3, actor1, actor2,

actor3, actor4, director_name, and runtime. From this dataset, it was possible to obtain

the table X and table Y that were used for the machine learning section (Section 3) of this

work. Table X consisted of 21,508 rows and 10 columns which were: year, genre1,

genre2, genre3, actor1, actor2, actor3, actor4, director, runtime. Table Y consisted of

21,508 rows and 1 column which was the rating column.

2.1.2 DATA STATISTICS

With a final dataset table ready to implement into our program, it was important

to understand the contents of it regarding every column and row. To start, ratings were

separated from the rest of the columns since those were the values that the model was

meant to predict. These were stored in a separate table called Y, and the rest of the data

was stored in a table called X (as described in Figure 2.1).

Regarding table Y, the data contained float values that represented the rating of

the movie from a range of 1 through 10. Figure 2.2 demonstrates a histogram with the

number of movies per rating in the ratings column (Hunter 2007).

11

Figure 2.2. Movies per ratings in the ratings column

On table X, there were a total of 13 columns, which were: title_id, title_name,

year, numVotes, genre1, genre2, genre3, actor1, actor2, actor3, actor4, director_name,

and runtime. First, the column “year” contained the release year of a movie released

between 1912 and 2021. A histogram that displays the distribution of these movies by

their release date is shown on Figure 2.3.

Figure 2.3. Distribution by release date in the year column

12

As it can be seen on Figure 2.2, there were movies stored from every single

decade since the first release in 1911. As dates get more recent, the more data available

there is. It was very beneficial to have many movies from 2010’s decade, since the goal

of this thesis is to predict movies that will be released in the upcoming years after 2020.

The reason for this is that films from the last decade have the same viewing audience and

many similar features than movies that will be released in years to come.

As for other columns, the actors were separated in the four columns: actor1,

actor2, actor3, and actor4. In one hand, the actor1 contained the principal actor or actress

of a movie. In the other hand, actor 2, actor3, and actor4 were actors with a secondary

role of a movie, but still an important part of the cast. There were some cases where some

movies would not contain more than one or two actors, so a ‘0’ was inserted for the

missing values in that specific row. Figures 2.4, 2.5, 2.6, and 2.7 show the count of the

top 25 results for each of the actor columns respectively.

Figure 2.4. Top 25 actors count in the actor1 column

13

Figure 2.5. Top 25 actors count in the actor2 column

Figure 2.6. Top 25 actors count in the actor3 column

14

Figure 2.7. Top 25 actors count in the actor4 column

Some of other columns present on table X were genre1, genre2 and genre3. The

first one of these represented the most relevant genre to categorize the movie. The other

two were situational because if a movie only contained one genre instead of two or

three, a 0 was inserted in these remaining columns to represent that the movie had no

more genres. Figures 2.8, 2.9, and 2.10 demonstrate the distribution (count) of each of the

genres respectively with bar plots.

15

Figure 2.8. Distribution of genres in the genre1 column

Figure 2.9. Distribution of genres in the genre2 column

16

Figure 2.10. Distribution of genres in the genre3 column

Finally, the last two columns in the table to discuss are the director_name and

runtime columns. They contained the director’s name and the length in minutes of the

movies respectively. Figure 2.11 shows the count of directors for the first 25 results, and

Figure 2.12 displays the demonstrates a distribution of length in minutes in the runtime

column.

17

Figure 2.11. Top 25 directors count in the director_name column

Figure 2.12. Distribution of length in minutes in the runtime column

Other columns from the dataset such as: title_id, title_name, numVotes, had to be

dropped at the moment of applying the machine learning algorithm. The title_id and

title_name columns because they were used for only identification purposes, and the

numVotes column because a new movie will never have any votes before release, so it

18

would not make sense to train the model with it included. Table 2.1 displays the initial

table for the Movie Ratings dataset.

title_id name rating year votes genre1 genre2 genre3 actor1 actor2 actor3 actor4 director runtime

tt0780504 Drive 7.8 2011 599536 Action Drama 0 Ryan Gosling Bryan

Cranston

Albert

Brooks

Carey

Mulligan

Nicolas

Winding Refn

100

tt0816692 Interstellar 8.6 2014 1637059 Adventure Drama Sci-fi Matthew

McConaughey

Anne

Hathaway

Jessica

Chastain

Mackenzie

Foy

Christopher

Nolan

169

tt0308508 Step Into

Liquid

7.4 2003 2668 Documentary Sport 0 Robert August 0 0 0 Dana Brown 87

tt2184339 The Purge 5.7 2013 214294 Horror Sci-fi Thriller Ethan Hawke Lena

Headey

Max

Burkholder

Adelaide

Kane

James

DeMonaco

85

Table 2.1. Initial table of 14 columns of the movie ratings dataset

Then, after preparing the table for the machine learning stage, the table was

modified to look like Figure 2.13, where ratings (Table Y) were separated from the rest

of the columns (Table X) since they were the values meant to be predicted.

Figure 2.13. Tables X and Y of the movie ratings dataset

19

2.2 HYPERSPECTRAL IMAGING

The dataset collected by the AUM-Hyperspectral team (Kursun et al. 2022),

which is yet to be finalized, currently has 462 bands with the goal of cloud detection,

classification, and segmentation. The images collected are recorded with the Resonon

Pica XC2 camera, which imaging system acts as a “push broom” scanning spectrometer

with 462 narrow wavelength bands ranging from 400 nm to 1000 nm. Moreover,

regarding the data classification, it is not the shape of the cloud chunks that is the most

predictive; in fact, it is the spectral signature due to the scatter/reflective properties of the

cloud particles that will help the most for this main task of individual pixel classification

(see Figure 2.14). Once the single pixel classification is done effectively, then some form

of postprocessing can be performed for segmenting a hyperspectral image into regions

according to cloud type or clear sky.

Figure 2.14. A render of a hyperspectral image collected by the AUM-Hyperspectral
team.

20

As it was mentioned before, AUM dataset has not been completed yet, which is

why this work will be using two benchmark datasets to test the categorical-boosting-

classification method that was developed using CatBoost (Section 3.2). These two

datasets are well-known HSI datasets captured by the AVIRIS (Airborne Visible Infrared

Imaging Spectrometer) sensor. The first dataset, called Indian Pines, is composed of

images of 145×145 pixels in size, with each pixel of the image represented with 204

spectral channels (bands) in the 400-2500 nm range of wavelengths (Grana et al. 2018).

The dataset includes 17 classes (class-0 is unlabeled and the other 16 classes are various

crops, grass, and woods); Table 2.2 lists the class names and the number of pixels per

class in the dataset.

Class ID Class Name Number of Pixels

1 Alfalfa 54

2 Corn-notill 1434

3 Corn-mintill 834

4 Corn 234

5 Grass-pasture 497

6 Grass-trees 747

7 Grass-pasture-mowed 26

8 Hay-windrowed 489

9 Oats 20

10 Soybean-notill 968

11 Soybean-mintill 2468

12 Soybean-clean 614

13 Wheat 212

14 Woods 1294

15 Build.-Grass-Trees-Drv. 380

16 Stone-Steel-Towers 95

Table 2.2. The class names and their respective number of pixels of the Indian Pines
dataset

21

With these class labels it is possible to obtain the ground truth image of the HSI

picture, which in other words, is the image with the true values that the machine learning

will use for identifying the class labels. Figure 2.14 demonstrates the RGB render of the

image, while Figure 2.15 shows the class labels (ground truth).

Figure 2.15. An RGB render of the Indian Pines HSI image

Figure 2.16. Ground truth image of the Indian Pines HSI image

22

The second dataset, called Salinas, consists of images of 512 × 217 pixels in size

with 204 spectral bands (Grana et al. 2018). The class labels and the number of pixels per

class in the dataset are listed in Table 2.3.

Class ID Class Name Number of Pixels

1 Broccoli (green weeds 1) 2009

2 Broccoli (green weeds 2) 3726

3 Fallow 1976

4 Fallow (rough plow) 1394

5 Fallow (smooth) 2678

6 Stubble 3959

7 Celery 3579

8 Grapes (untrained) 11271

9 Soil (vineyard develop) 6203

10 Corn (senesced green weeds) 3278

11 Lettuce (romaine 4wk) 1068

12 Lettuce (romaine 5wk) 1927

13 Lettuce (romaine 6wk) 916

14 Lettuce (romaine 7wk) 1070

15 Vineyard (untrained) 7268

16 Vineyard (vertical trellis) 1807

Table 2.3. The class names and the number of pixels in each class of the Salinas dataset

 These class labels include vegetables and various types of soils where there can

be differences in the reflectance (fraction of sunlight reflected from the surface) for the

same wavelength interval of each pixel. To demonstrate this, a plot with 5 different class

labels was created using their mean wavelength channel value compared to the

reflectance, shown in Figure 2.17.

23

Figure 2.17. Wavelength channel and reflectance values of 5 class labels from the Salinas
dataset.

It is also important to clarify that pixels for each of these class labels are similar

but not identical. In some cases, with considerable differences between their reflectance

values. To demonstrate this, Figure 2.18 shows the wavelength channel and reflectance

values for 5 different pixels of the Fallow class-label.

Figure 2.18. Wavelength channel and reflectance values of 5 different pixels for the
Fallow class-label

24

Moreover, the RGB render of the image is shown in Figure 2.19, while the class

labels (ground truth) are shown in Figure 2.20.

Figure 2.19. An RGB render of the Salinas HSI image

Figure 2.20. Ground truth image of the Indian Pines HSI image

25

CHAPTER 3: MACHINE LEARNING MODEL

3.1 MOVIE RATINGS

With the use of the Movie Ratings dataset, several approaches were performed

utilizing CatBoost in order to test its effectiveness and maximize the chances of a high-

accuracy machine learning model (Wang 2022). First, CatBoost was applied directly

(Section 3.1.1) without preprocessing data, where its performance was compared to one-

hot encoding (Harris & Harris 2012). Then, another approach called the Mean-based

approach (Section 3.1.2), focused on calculating the mean of every actor’s previous

ratings in order to predict future ratings based on those preceding movies. Finally, the last

method called the Word-embedding approach (Section 3.1.3), which consisted of

applying word embedding to both the actors and genres columns in order to vectorize the

data for numerical representation (Mikolov et al. 2013).

3.1.1 DIRECT-CATBOOST APPROACH

This approach was based on directly providing the training and testing data to the

CatBoost algorithm with any sort of preprocessing or data conversion. What made this

possible was the use of a parameter in the CatBoostRegressor function called

“cat_features”, which describes the categorical features that will be given to the model.

Therefore, all the columns that were considered categorical were inserted on this

parameter, which were: actor1, actor2, actor3, actor4, director_name, genre1, genre2, and

genre3. Typically, a machine learning model is not able to understand data that is not in

numerical format, which is why in situations like this one the common approach is to

26

apply one-hot encoding. The difference is that with the Catboost algorithm one can

automatically do the categorical-to-numerical conversion by specifying which are the

categorical features in the model. Therefore, to test the reliability of this automatic

conversion, it was decided to apply one-hot encoding before giving the data to the

CatboostRegressor function in order to test if the results would be similar (McKinney

2011). This process is exhibited on Table 3.1, where the table only contains genres in

order to simplify the demonstration of one-hot encoding.

year genre1 genre2 genre3 runtime

2004 Action Adventure Animation 115

2003 Action Crime Thriller 111

2006 Action Adventure Thriller 126

2003 Comedy 0 0 85

2002 Drama Fantasy History 99

Table 3.1. Table of genres ready for one-hot encoding

Then, for every different categorical value present in this table, a new column is

created that will contain a 1 or 0 depending on whether the rating of a specific row has

that category or not. A demonstration of this is displayed on Table 3.2.

year runtime Action Adventure Animation Crime Thriller Comedy Drama Fantasy History

2004 115 1 1 1 0 0 0 0 0 0

2003 111 1 0 0 1 1 0 0 0 0

2006 126 1 1 0 0 1 0 0 0 0

2003 85 0 0 0 0 0 1 0 0 0

2002 99 0 0 0 0 0 0 1 1 1

Table 3.2. Table of genres after one-hot encoding

27

It is important to point out that a variation of one-hot encoding was used in this

thesis. Instead of inserting a value of 1 for every row that had a present genre in one of

the columns, it was decided to use values of 1, 0.8 or 0.6 depending on the situation. If a

movie had its principal genre (genre1) in the column, then it would receive a 1. If it

contained a secondary genre (genre2) then it would be a 0.8. If it had a third genre

(genre3) then a 0.6. The logic behind this is that the most relevant genre of the movie

should receive a heavier weight in the calculation of the resultant rating. The machine

learning model was able to understand this by using the aforementioned variation of one-

hot encoding.

Then, after running both the one-hot encoding and Direct-Catboost programs

using genres as the training data, the one-hot encoding version had approximately the

same results of the Direct-Catboost version, obtaining 0.60 and 0.58 respectively, proving

this way that Catboost can easily convert categorical data into numerical with only the

use of an extra parameter in its function and still produce similar results as manually

converting that data.

With this knowledge in hand, there was enough confidence to give the

CatboostRegressor function all the categorical data at once (including actors and

directors). This extra data provided, was able to improve the model performance to a

coefficient of correlation of 0.65. In a nutshell, Figure 3.1 showcases the algorithm for

the Direct-CatBoost approach.

28

DIRECT-CATBOOST ALGORITHM

1)Select columns: year, genre1, genre2, genre3, actor1,
actor2, actor3, actor4, director_name, runtime for table X
and ratings for table Y

2) Train-test split the data using 0.15 as the size of the
split parameter.

3) Declare the CatBoostRegressor function using the
categorical data (genre1, genre2, genre3, actor1, actor2,
actor3, actor4, director_name) in cat_features

4) Fit the model using X_train, Y_train, and then predict
the X_test table

5) Compare y_test with y_pred in order to calculate the R-
score correlation result

Figure 3.1. Pseudocode for the Direct-Catboost approach program

3.1.2 MEAN-BASED APPROACH

This model consisted on selecting every distinct person of an actor or director

column and calculating a mean rating for them. In order to implement this, a Python

dictionary to store the mean rating of every different item was needed, where the key of

the dictionary was the actor or director in the column, and the respective value was the

mean rating of that person. For every movie in the dataset, the four actor columns and the

director column were selected, along with their ratings, year of release, and runtime. The

reason for only selecting these columns in this approach, was to determine if previous

successes or failures of actors and directors could be a factor of determining future

ratings for upcoming movies. The concept behind this approach is explained in Eq. 1.

29

𝑋 =
∑ ௑ೖ
೙
ೖసభ

௡
 (1)

Where:

𝑋௞ = the rating of the kth movie

𝑛 = number of movies

𝑋 = the mean rating

 The mean rating X was calculated according to Eq. 1 by summing together each

of the person’s previous movie ratings (X1, X2, X3… Xk) and dividing by the number of

movies that person had previously acted or directed on. A demonstration of how the data

was transformed is given in Tables 3.3, 3.4, and 3.5.

year actor1 actor2 actor3 actor4 genre1 genre2 genre3 director runtime

2003 Craig T.

Nelson

Samuel L.

Jackson

Holly Hunter Jason Lee Action Adventure Animation Brad Bird 115

2003 Donald

Sutherland

Mark

Wahlberg

Edward

Norton

Charlize

Theron

Action Crime Thriller F. Gary Gray 111

2006 Tom Cruise Michelle

Monaghan

Ving

Rhames

Philip

Seymour

Hoffman

Action Adventure Thriller J.J. Abrams 126

2003 Adam

Goldberg

Andy Dick Judy Greer Mario Van

Peebles

Comedy 0 0 Jonathan

Kesselman

85

2002 Sergey

Dreyden

Mariya

Kuznetsova

Leonid

Mozgovoy

0 Drama Fantasy History Aleksandr

Sokurov

99

Table 3.3 Initial table of values for the Mean-based approach

30

Then, the genres are removed since they will not be considered on this approach

(mean values will only be calculated for actors and directors). This is shown in Table 3.4.

year actor1 actor2 actor3 actor4 director runtime

2003 Craig T. Nelson Samuel L. Jackson Holly Hunter Jason Lee Brad Bird 115

2003 Donald Sutherland Mark Wahlberg Edward Norton Charlize Theron F. Gary Gray 111

2006 Tom Cruise Michelle Monaghan Ving Rhames Philip Seymour Hoffman J.J. Abrams 126

2003 Adam Goldberg Andy Dick Judy Greer Mario Van Peebles Jonathan Kesselman 85

2002 Sergey Dreyden Mariya Kuznetsova Leonid Mozgovoy 0 Aleksandr Sokurov 99

Table 3.4 Table containing only actors and directors before transforming values

Finally, the mean values are calculated for every categorical data in the table,

demonstrated in Table 3.5.

year actor1 actor2 actor3 actor4 director runtime

2003 8.0 6.32 6.68 6.15 7.46 115

2003 6.88 6.47 7.14 6.75 6.76 111

2006 6.86 6.39 6.58 6.56 7.22 126

2003 6.1 5.85 6.43 6.1 5.65 85

2002 7.4 7.4 7.4 7.4 7.4 99

Table 3.5 Table containing only actors and directors after transforming values

As shown in Table 3.5, every actor and director received a score based on their

previous movies and their respective ratings. There were rare scenarios when one or

many members of the cast had not been in a movie ever before, these cases were handled

by giving those persons an average rating based on the rest of the cast ratings. An

example of this is shown in the last row of Table 3.5 where only one actor had previous

movies in the dataset. Therefore, the mean rating of that actor was used for rest of the

31

cast. Likewise, there can also be even a rarer scenario which is the case when a movie has

an entire cast that has never acted/directed in a film before. In this case, there was no

choice but to give a value of 6 to every member of the cast (a common average rating)

since there was no possible way to assign a mean rating for any member of the cast in

that movie. In conclusion, the final algorithm for the Mean-based approached is

demonstrated in Figure 3.2.

MEAN-BASED ALGORITHM

1) Select columns: year, actor1, actor2, actor3, actor4,
director_name, runtime for table X and ratings for table Y

2) Train-test split the data using 0.15 as the size of the
split parameter.

3) Store every distinct item of the actor1, actor2, actor3,
actor4, and director_name columns in a dictionary, and use
each of these items (the persons’ names) as their key.
Then, for every key, their value will be the mean rating of

that person.

4) Transform the items of X_train that are present in the
dictionary from the keys to their corresponding values

5) Repeat step 4 for X_test but create an exception in the
scenario where the key is not found in the dictionary
(value of 0). To handle the 0s, calculate an average of the
items of the same row as the 0 is, and replace every
instance of that 0 with the calculated average number.

5) Fit the model using X_train,Y_train, and then predict
the X_test table

6) Compare y_test with y_pred in order to calculate the R-
score correlation result

Figure 3.2. Pseudocode for the Mean-based approach program

32

3.1.3 WORD EMBEDDING APPROACH

This model was based on representing words (string values) for text analysis,

where every string received by the model was transformed into numerical vector

representations. The idea was that if words had similar meaning, they would be

represented with similar vector values (Goldberg et al. 2014). Every categorical feature in

the dataset was stored in a list where the vectorization took place (Rehurek & Sojka

2011). For every row of the dataset there would be two different vector representations

taking place: one for the genres of the movie and another for the actors and director of

that title (Oliphant 2006).

Specifically, every row would convert their genre values into a 40-dimensional

vector representation, and the movie’s cast to another 40-dimensional representation. One

thing to note is that in this thesis, for each of the forty dimensions, the first twenty were

always assigned for only the first actor or first genre, and then the other twenty

dimensions would be used to represent the rest of the cast or the rest of the genres. This

was done in order to test how much of an impact the lead actor and lead genre could

make in the ratings prediction. After this, a new table was created which contained all

these new vector values, so that the machine learning model could apply the training and

testing necessary. Tables 3.7 and 3.8 demonstrate the data before and after the

vectorization took place.

33

year actor1 actor2 actor3 actor4 genre1 genre2 genre3 director runtime

1980 Anthony

Hopkins

John Hurt Anne Bancroft John Gielgud Biography Drama 0 David Lynch 124

2008 Ray

Stevenson

Dominic West Julie Benz Doug

Hutchison

Action Crime Drama Lexi

Alexander

103

2014 Cameron Diaz Leslie Mann Nikolaj Coster-

Waldau

Kate Upton Comedy Romance 0 Nick

Cassavetes

109

2010 Benicio Del

Toro

Anthony

Hopkins

Simon Merrells Emily Blunt Drama Fantasy Horror Joe Johnston 103

1999 Chris

O'Donnell

Renée

Zellweger

Artie Lange Ed Asner Comedy Romance 0 Gary Sinyor 101

Table 3.7. Initial table of values for the Word-embedding approach

year runtime gd1 gd2 gd3 … gd38 gd39 gd40 pd1 pd2 pd3 … pd38 pd39 pd40

1980 124 -2.235 0.092 2.895 … -1.219 -2.284 -1.322 -0.008 -0.034 -0.003 … -0.025 -0.009 0.006

2008 103 -2.235 0.092 2.895 … -0.822 -1.868 -1.143 0.009 -0.023 0.035 … -0.066 -0.074 -0.036

2014 109 -1.282 -0.128 2.234 … -1.412 -3.251 -2.057 -0.015 0.033 -0.041 … -0.014 -0.023 -0.014

2010 103 -0.553 0.028 0.657 … -0.349 -0.705 -0.486 0.049 0.045 0.014 … 0.016 -0.023 -0.013

1999 101 -2.235 0.092 2.895 … -0.952 -2.433 -1.427 0.010 -0.013 -0.009 … -0.033 -0.038 -0.0007

Table 3.8. Table of values after word-embedding vectorization

As shown on Table 3.8, the table consisted of 82 columns where every gd column

stood for “genre dimension” and every pd column for “person dimension”. Several

dimension sizes were tried (from 10 to 80), but 40 was the best option in terms of results.

Lastly, in Figure 3.3 the algorithm for the Word-embedding approach is shown.

34

WORD-EMBEDDING ALGORITHM

1)Select columns: year, genre1, genre2, genre3, actor1, actor2,
actor3, actor4, director_name, runtime for table X and ratings
for table Y

2) Train-test split the data using 0.15 as the size of the split
parameter.

3) Store every column that contains categorical data from X_train
into a list including their missing values (0’s)

4) Copy the values of the list (without the 0s) to another list.
Then, apply Word2Vec() model with vector_size = 20 to this new
list

5) Create a for loop to assign every vector value of the genre1
column into a list, then do the same for actor1, but store their
vector values into a second list.

6) Create a for loop to assign every vector value of genre 2 and
genre 3 into a third list, and then actor 2, actor 3, actor 4,
director_name into a fourth list.

7) Use the first list that has the vectors of genre 1 to create
20 dimensions (20 columns). Then, use the second list which has
the vectors of actor1 to create 20 more dimensions (20 columns).

8) Repeat step 7 but using the third list (containing genre2,
genre3) to create 20 dimensions. Then use the fourth list
(containing actor2, actor3, actor4, director_name) to create 20
more dimensions.

9) Append the dimensions of genres and actors respectively to
have a total of 40 columns (dimensions) of genres vector values,
and 40 columns (dimensions) of people (actors and directors),
then append this 80-dimensional table to X_train

10) Do steps 3 through 9 but for X_test instead

11) Fit the model using X_train,Y_train, and then predict the
X_test table

12) Compare y_test with y_pred to calculate the R-score

Figure 3.3. Pseudocode for the Word-embedding approach program

35

3.1.4 MODEL ROADMAP

 This section depicts the whole process, from start to finish, of all the necessary

steps needed in order to calculate the movie ratings predictions using any of the

approaches explained in this section. Figure 3.4 demonstrates a roadmap with each of

these important steps (Taei 2022).

Figure 3.4. Ratings Predictor Application roadmap

36

3.2 HYPERSPECTRAL IMAGING

While the high-resolution representation of an individual pixel in HSI (having

many narrow wavelengths covering a large portion of the spectrum from near-ultraviolet

to near-infrared range) makes discrimination of many more classes from each other using

just a single pixel (GISGeography 2022), reflectivity/irradiances in nearby wavelength

intervals are generally very redundant and dimensionality reduction methods (Alpaydin

2014) are needed for band selection for HSI systems (Sellami et al. 2019).

Applying some feature selection algorithms with high time complexity such as

sequential backward selection (with time complexity of O(n2)) is almost prohibitive for

such high dimensional datasets. Moreover, feature selection algorithms need to be further

adapted to HSI domain, because the band selection for the classification task should also

help determine important ranges of the spectrum. Feature selection process should not

necessarily treat each one of the hundreds of wavelengths of the spectrum as separate or

unrelated variables, because selection of individual wavelengths of the spectrum may not

be justified and the task could be simplified by finding a few wavelength ranges of

greatest importance.

For example, the AUM-hyperspectral team has identified four intervals to be the

most useful for cloud classification. As shown in Figure 3.5, there are four intervals

(highlighted with red dash-lines) identified by the domain expert Randy Russell in the

team. Representing one interval as one categorical variable (i.e., creating a categorical

variable for that interval by representing it with the index of clustering applied to the

dataset using the variables in that interval only) can be a good approach to utilize and test

37

the capabilities and applicability of CatBoost or other comparable boosting methods to

the HSI domain.

Figure 3.5. Signatures of clear sky (SKY), thin clouds (THIN), clouds (CLD), and dark

clouds (DARK) in 462 bands of the HSI images being collected by the AUM

Hyperspectral team.

The proposed algorithm called Clustered-Shifting-Window Boosting Algorithm

presented in Figure 3.6 is first applied on the two benchmark datasets: Indian Pines and

Salinas. The algorithm will be tested on the AUM HSI Cloud dataset once it is finalized.

38

Clustered-Shifting-Window Boosting Algorithm
Inputs:

X[N,D]: Train-set of N samples and D features
y[N]: Class-labels of the N samples

X_test[M,D]: Test-set of M samples and D features
Y_test[M]: Class-labels of the M test samples

w: Window length
s: Stride of windows
K: Number of clusters in each window

Output:

Model: Classifier (and centroids)
Acc: Accuracy on the test set

Begin:

Num_Windows = 0

for win_start = 1:s:D
 win_end = win_start + w
 windowed_data = X[:, win_start:win_end]
 centers = Kmeans(windowed_data, K)

train_centers = Find_Nearest_Center(X, centers)
test_centers = Find_Nearest_Center(X_test, centers)

Categorical_Trainset[:, Num_Windows] = train_centers
Categorical_Testset[:, Num_Windows] = test_centers

 Num_Windows = Num_Windows + 1

end for

Model = Train_Boost_Classifier(Categorical_Trainset, y)
Acc = Test_Classifier(Model, Categorical_Testset, y_test)

Figure 3.6. Clustered-Shifting-Window Boosting Algorithm for HSI dataset

39

3.2.1 MODEL ROADMAP

This section demonstrates all the necessary steps needed in order to predict pixels

from an HSI image. Figure 3.7 demonstrates a roadmap with each of these important

steps (Taei 2022).

Figure 3.7. HSI Pixel Predictor Roadmap

40

CHAPTER 4: EXPERIMENTAL RESULTS

 In this chapter, several results were calculated from the Movie Ratings dataset

(Section 4.1) utilizing the approaches previously explained (Section 3.1. Regarding

hyperspectral imaging, results of the HSI classification (Section 4.2) were calculated with

their respective sensitivity of different hyperparameters.

4.1 MOVIE RATINGS RESULTS

For each of the approaches in this section, their results are demonstrated

calculating the coefficient correlation of the model and displaying a scatterplot to

visualize the predictions results.

4.1.1 DIRECT-CATBOOST APPROACH

This model obtained 0.65 coefficient of correlation, which was the highest

accuracy achieved on this thesis for the Movie Ratings dataset. The result can be

showcased in the scatterplot in Figure 4.1.

Figure 4.1. Scatterplot result for the Direct-Catboost approach

41

 4.1.2 MEAN-BASED APPROACH

This model obtained 0.58 coefficient of correlation, which was promising since it

only used actors and directors without the use of genres columns. This proved that these

columns are essential for predicting unseen data on this dataset. The scatterplot in Figure

4.2 displays this result.

Figure 4.2. Scatterplot result for the Mean-based approach

4.1.3 WORD-EMBEDDING APPROACH

This model obtained 0.45 coefficient of correlation, which was the lowest score

from all of the approaches. It can be demonstrated that word embedding was not

remarkably successful for this dataset, especially because it could not predict values with

low ratings as shown in Figure 4.3.

42

Figure 4.3. Scatterplot result for the Word-embedding approach

4.2 HYPERSPECTRAL IMAGING RESULTS

As shown in Table 4.1 (using the Salinas dataset), for each window, a single

categorical variable with K categories is created by K-means and these are stacked

horizontally to create a dataset with clustered categorical features to train/test the

boosting model. The window length, w, and the stride amount, s, determine the number

of categorical features created (i.e. the number of intervals). The results reported are the

means and standard deviations of 10 runs (each with 10% vs 90% train-test splits).

 Stride = 5
Window

length = 10

Stride = 10
Window

length = 10

Stride = 5
Window

length = 20

Stride = 10
Window

length = 20

K = 10 86.93  0.32 85.39  0.21 86.74  0.48 86.06  0.58

K = 20 88.06  0.24 86.70  0.16 88.73  0.17 87.89  0.28

K = 30 88.36  0.13 86.95  0.15 89.13  0.13 88.5  0.19

Table 4.1. Sensitivity of the hyperparameters (various K for K-means, window length and
window stride) for Salinas dataset.

43

As the categorical dataset has fewer features, it is more suitable for feature

selection and classification using boosting, which is among the goals in this line of work.

In the pixel classification task of 17 classes (16 target classes of various vegetation etc.

and the unlabeled pixels with class-label of 0) on the test set, accuracies with the

proposed boosting method yields favorable results. For comparison with the use of the

original raw variables (i.e., 204 bands), various popular benchmark classifiers

(Fernandez-Delgado et al. 2014; Pedregosa et al. 2011) are also used. The results on the

Indian Pines and the Salinas datasets are reported in Table 4.2. As before in Table 4.1,

the results reported in Table 4.2 are the means and standard deviations of 10 runs (each

with 10% vs 90% train-test splits).

 Indian Pines Salinas

K-NN (K=1) 63.49 ± 0.28 86.61 ± 0.11

K-NN (K=3) 65.87 ± 0.40 87.30 ± 0.14

K-NN (K=5) 66.81 ± 0.32 87.40 ± 0.14

Boosting on the original features 71.88 ± 0.55 88.38 ± 0.12

Proposed K-means + Boosting 71.89 ± 0.60 89.13 ± 0.13

Table 4.2. Comparisons on HSI classification results

44

CHAPTER 5: CONCLUSION

 In this thesis, machine learning algorithms based on categorical boosting were

applied to different datasets with the goal of obtaining high-accuracy results with

dimensionality reduction. In the Movie Ratings dataset, CatBoost was used to handle

categorical data effectively by directly specifying the categories on the CatBoost

regressor function (instead of trying the infeasible one-hot-encoding or trying to adapt a

word-embedding method to deal with the genre and actor categories in the data). Efforts

in adapting/applying the boosting algorithms studied in this thesis to the hyperspectral

cloud segmentation project conducted by the AUM Hyperspectral team led to an

algorithm that was named the Clustered-Shifting-Window Boosting Algorithm for

classifying hyperspectral image pixels. The proposed algorithm applies K-Means

clustering to create new categorical variables, which can be used either to reduce

dimensionality or to augment the original HSI dataset. Experiments on the Indian Pines

and Salinas datasets showed favorable results.

As future work, the algorithms developed in this thesis will be applied to the final

version of the cloud dataset that is currently under preparation for the AUM-

Hyperspectral research grant.

45

REFERENCES

Alpaydin, E. (2014). Introduction to machine learning, third edition. The MIT Press,

Cambridge.

Fernandez-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need

hundreds of classifiers to solve real world classification problems? Journal of Machine

Learning Research, 15:3133–3181.

GISGeography (2022) Multispectral vs Hyperspectral Imagery Explained.

https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/. Last

accessed on 22 of July of 2022.

Goldberg, Y. & Levy, O. (2014). word2vec Explained: deriving Mikolov et al.'s

negative-sampling word-embedding method, arXiv.

Grana, M., Veganzons, M., & Ayerdi, B. (2018). Hyperspectral remote sensing scenes -

grupo de inteligencia computacional (GIC). http://www.ehu.eus/ccwintco/index.php.

(Accessed on 12/22/2018).

Gulin, A. et al. (2018). CatBoost: unbiased boosting with categorical features, arXiv.

Harris, D. & Harris, S. (2012). Digital design and computer architecture (2nd ed.). San

Francisco, Calif.: Morgan Kaufmann. p. 129.

Hunter, J. (2007). Matplotlib: A 2D graphics environment, Computing in Science &

Engineering

IMDb datasets. IMDb, https://www.imdb.com/interfaces/ . Accessed 20 December 2021

46

Kursun, O., Cueva-Parra, L., & Russell, R. (2022). NSF RUI: Collaborative Research:

CDS&E: A Modular Multilayer Framework for Real-Time Hyperspectral Image

Segmentation National Science Foundation Grant No. 2003740.

Kursun, O., Dinc, S., & Favorov, O.V. (2021). Contextually Guided Convolutional

Neural Networks for Learning Most Transferable Representations. ArXiv:2103.01566

[Cs], Mar. 2021. arXiv.org, http://arxiv.org/abs/2103.01566

McKinney, W. (2011). pandas: A Foundational Python Library for Data Analysis and

Statistics

Mikolov, T. et al. (2013). Distributed Representations of Words and Phrases and their

Compositionality, arXiv.

Oliphant, T. (2006). Guide to NumPy

Oracle MySQLWorkbench (Version 8.0) https://dev.mysql.com/downloads/workbench/ .

Accessed 23 December 2021

Pedregosa, F. et al. (2011). Scikit-learn: Machine Learning in Python, JMLR, 12, pp.

2825-2830.

Rehurek, A. & Sojka P. (2011). Gensim–python framework for vector space modelling,

NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic

Samat et al. (2021) GPU-Accelerated CatBoost-Forest for Hyperspectral Image

Classification Via Parallelized mRMR Ensemble Subspace Feature Selection, IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 3200

- 3214. https://ieeexplore.ieee.org/document/9368975

47

Sellami, A., Farah, M., Riadh Farah, I., & Solaiman, B. (2019). Hyperspectral imagery

classification based on semisupervised 3-d deep neural network and adaptive band

selection. Expert Systems with Applications, 129:246 – 259.

Taei, P. (2022). Visme (version 3.4.2) https://www.visme.co/es/.

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA:

CreateSpace.

Wang, P. (2022). Anaconda (version 2.2.0) https://anaconda.org/anaconda/spyder.

