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ABSTRACT 

Compared to developing single models, ensemble learning algorithms that utilize 

decision trees (DTs) and boosting have received increasing interest due to many features 

including but not limited to their fast and accurate predictions, robustness to noise, ability 

to deal with diverse features such as both numerical and categorical features, having 

fewer parameters to optimize, and having a rule-based interpretability using if-then-like 

rules. Gradient/Adaptive boosting methods based on decision trees, such as CatBoost and 

AdaBoost, can handle diverse data types and solve a wide range of machine learning 

problems involving categorical variables. The thrust of this thesis is to develop machine 

learning algorithms based on such boosting algorithms and test their applicability and 

prediction performances on several datasets. These algorithms are showcased in this 

thesis with two types of data. One is the Movie Ratings dataset and the other one is three 

Hyperspectral Image (HSI) datasets for pixel classification. These two types of data 

consist of very different characteristics.  

Movie Ratings dataset is composed of both numerical and categorical features 

(such as genre and actors) and requires a regression machine learning model to predict 

the ratings. Moreover, some of the categorical features in the Movie Ratings dataset have 

high cardinality (having a large number of categories, such as the main actor of the 

movie).  

On the other hand, in the Hyperspectral Image (HSI) domain, there are high 

number of numerical features and a classification machine learning model is required to 

predict classes of pixels. There are vegetation vs. soil types of classes in two of the HSI 
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datasets used and there are cloud-classes (e.g., dark vs. thin clouds) in the third HSI 

dataset. Interestingly, HSI dataset does not contain any categorical features but the thesis 

proposes and demonstrates that creation of categorical features using clustering 

algorithms proves very useful in enriching the data representation for categorical-

boosting ensembles.  

For all the datasets used in this thesis, gradient boosting methods performed 

favorably to the benchmark algorithms. This thesis presents a method that can be further 

developed for achieving dimensionality reduction, high-accuracy classification, and 

implementation in high-performance computing frameworks for hyperspectral image 

classification.   
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CHAPTER 1: INTRODUCTION 

As the performance of machine learning (ML) models perform differently on 

different dataset, there is no guaranteed single best off-the-shelf machine learning 

algorithm for a given learning task/dataset, which is also known as “No Free Lunch 

Theorem” in machine learning (Alpaydin 2014). Nevertheless, ensemble methods are 

known to achieve low variance; that is, compared to using a single model, an ensemble 

method has smaller deviation in the learned functions from one training run to another. 

Boosting is a meta-learning algorithm and it can combine classifiers to create powerful 

ensembles. Popular implementations of boosting such as AdaBoost, XGBoost, and 

CatBoost uses decision trees (shallow decision trees or decision tree stumps) and 

compared to single ML models. Decision trees are data structures that repeatedly divide 

the dataset into smaller subsets based on applying thresholds on features with the goal of 

minimizing impurity (until maximum depth is reached or one class left in the 

branch/leaf). Boosting methods enjoy robustness to noise, ability to deal with both 

numerical and categorical features, having fewer parameters to optimize, and having a 

rule-based interpretability using if-then-like rules (Samat et al. 2021; Fernandez-Delgado 

et al. 2014).  

In this thesis, boosting algorithms are studied and their feasibility is tested on 

some challenging datasets. One of the datasets is the Movie Ratings dataset, which is 

composed of both numerical (such as year and duration of the movie) and categorical 

features (such as genre and actor names). It requires a regression model for predicting the 

movie ratings from these features. Moreover, there are a variety of genres available in the 

categorical genre feature but the cardinality of the actor feature is much greater. There are 
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a much larger variety of distinct categories for the actor-related fields; each actor name is 

a different category and there are many actors in the dataset. 

The other datasets are from the field of Hyperspectral Imaging (HSI). The HSI 

datasets are composed of large HSI images with the task of classification of individual 

pixels. Typically, for every HSI image a ground truth image is provided that contains the 

class labels of individual pixels. An exemplary application could be classification of 

individual pixels into various types of vegetation/soils/fields/trees, and another 

application could be classification of individual pixels into dark, regular, or thin clouds 

versus clear sky. In HSI datasets, there are high number of numerical features and a 

classification machine learning model is required. Typically, HSI datasets contain several 

hundred of numerical features (each one corresponding to reflectivity/irradiances in a 

different wavelength) but they do not contain any categorical features. However, boosting 

methods can take advantage of a preprocessing proposed in this thesis to create new 

categorical features using clustering algorithms for enriching the data representation, and 

thus increasing the classification accuracy and reducing dimensionality.  

CatBoost was the first boosting algorithm used in this thesis. In the early phases 

of the thesis, CatBoost was identified to be an efficient method needed to deal with the 

categorical features available faced in predicting the movie ratings. “CatBoost” name 

comes from two words “Category” and “Boosting”. CatBoost was developed by Yandex 

and released to the open-source community in 2017 and became popular primarily due to 

its ability for handling categorical features without overfitting. It can also be trained very 

fast on GPU. For this thesis, CatBoost’s Python programming language implementation 

was used with the following easy set up command: “pip install catboost”. As described 
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above, in this thesis, CatBoost was tested with different datasets. The first task at hand 

deals with movie ratings prediction using the Movie Rating dataset (Section 2.1), which 

contains several categorical fields that were directly extracted from IMDb’s official 

website. This work proposes the idea of predicting ratings for movies before their release, 

which is a feature yet to release on current applications. To achieve this, several 

approaches are proposed (Section 3.1), where each of these use the categorical data with 

different methods in order to calculate accurate prediction values results with a high 

coefficient of correlation (Section 4.1) using CatBoost as its model regressor.  

The second task at hand refers to the prediction of pixel values of hyperspectral 

images. In Hyperspectral Imaging (HSI), a pixel is characterized by a high number of 

spectral channels/bands, thus allowing accurate and efficient classification of individual 

pixels (Sellami et al. 2019; Grana et al. 2018; GISGeography 2022; Kursun et al. 2021). 

HSI cameras vary in the number of wavelengths (bands) they have, but typically in an 

HSI dataset, every pixel is represented by several hundreds of bands. The spectral 

signature in those bands (reflectivity/irradiances in different wavelengths) for a pixel can 

be used as a powerful predictor of the class-label (i.e., for classification of that individual 

pixel). Since different classes have different certain hyperspectral signatures, HSI can 

serve as an important pattern recognition goal, for example, for scanning a large field by 

taking aerial pictures. In such an HSI application, single pixel classification can help 

monitor the state of crops (wet/dry/rotten) or to find irregularities such as a metal object 

camouflaged in the field. This thesis proposes a categorical-boosting-classification 

method that utilizes CatBoost (Section 3.2) as a viable solution to the pixel classification 

problem. This dataset is currently being extracted by the AUM-Hyperspectral team 
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(Kursun et al. 2022). Therefore, it was not possible to test the proposed algorithm on the 

finalized dataset. Consequently, to overcome this inconvenience, this work used two 

benchmark HSI datasets, Indian Pines and Salinas, as presented in Section 2.2. The 

experimental results are presented in Section 4.2. 

Moreover, Hyperspectral imaging can potentially be of great benefit for modern 

applications. In the case of hyperspectral sky imaging (such as the AUM-Hyperspectral 

team’s dataset), a potential application is the development of an automated ground-based 

system for detecting the amount and type of cloudiness. Such systems could improve the 

spatial and temporal resolution of cloud information vital to understanding Earth’s 

climate.  In the case of hyperspectral imaging of the Earth’s surface (such as the Indian 

Pines and Salinas datasets) the images yield important information on land use and 

agricultural productivity.  

The thesis is organized as follows. The datasets, including data extraction and 

data statistics, is described in Chapter 2. The proposed machine learning models using 

categorical boosting are described in Chapter 3. The experimental results on the datasets 

are presented in Chapter 4. Finally, the conclusions and future work are discussed in 

Chapter 5. 
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CHAPTER 2: DATA 

This chapter provides a thorough explanation on how the data used in this thesis 

was obtained, and what each of the feature columns in the datasets represent. Two 

sections will be discussed in this chapter: The Movie Ratings dataset on Section 2.1, and 

the Hyperspectral Imaging datasets on Section 2.2. Every dataset will be converted to two 

tables: table X and table Y. In machine learning the goal is to predict values from table Y 

after training the model with values from table X (Pedrosa et al. 2011). An example of 

this is visualized on Figure 2.1 where the feature matrix (X) is a table where there are D 

number of columns and N number of rows from the dataset, and the target vector (Y) 

which is a table with a single column (not present on table X) with N number of rows.  

 

Figure 2.1. Visualization of mapping/learning task of machine learning as a function from 

table X (the training dataset with N examples and D features) to table Y (the class-labels 

of those N training examples) 
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2.1 MOVIE RATINGS  

This dataset consisting of 21,508 sentences and 14 fields of mainly categorical 

data describes information about several movies released from 1912 until 2021. The 

objective of this work was to utilize columns of said dataset, such as actors and genres, to 

train the CatBoost machine learning algorithm and be able to predict movie ratings as 

accurately as possible (Gulin et al. 2018). 

2.1.1 DATA EXTRACTION 

The data was obtained from the International Movie Database official’s website 

(IMDb) where there is available data free of access (“IMDb datasets”, 2021). Several 

TSV (tab separated format) files can be downloaded by the public in this site, where the 

following tsv files: title_basics, title_principals, title_ratings, and name_basics were 

obtained to start the creation the Movie Ratings dataset. After the files were downloaded, 

the next step was preprocessing the data to have it machine-learning-ready for our 

program, which meant that a lot of irrelevant data had to be erased. For every file, each 

column was considered for keeping in the final dataset, but only those that seemed more 

relevant for predicting ratings of movies were kept. For example, some fields that were 

not considered were: titleType, originalTitle, isAdult, endYear from the title_basics file. 

On another file called title_principals, some fields that were also unconsidered were: 

category, job, and characters. Lastly, on the name_basics file, the removed fields 

were:  birthYear, deathYear, primaryProfession, and knownForTitles. After manually 

deleting the unnecessary columns, all the data that was needed was available, but it was 

separated and spread across four different files. Therefore, to only obtain the final table 
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result in one file, a database was created in order to store and combine the data on all of 

the files. 

The data from each of the files was inserted into tables in a database (Oracle 

MySQLWorkBench 2021), and after some select commands were implemented, it was 

possible to obtain queries that would contain the desired final data. The query result that 

consisted of everything that was needed was a table which was imported into a Python 

program in a CSV (comma separated format) file (Van Rossum et al. 2009). This table 

contained 695,974 rows and 10 columns, which consisted of title_id, rating, numVotes, 

title_name, year, genres, person_id, person_job, person_name, and runtime. 

Although having this large amount of data was promising, it was necessary to do 

some further processing since some movies had missing values in all the genres and year 

of release columns. Therefore, every movie that had these missing values was discarded. 

This resulted on the remaining movies having a high number of votes, which proved that 

movies that were more popular had more reliable data. On top of this, various column 

values in the table were re-arranged so that the data could later be processed by 

algorithms in a more effective way. An example of this was making sure that each movie 

would appear in only one row, instead of multiple times. In the original table, for every 

different person that participated in a movie, a whole new row was needed which would 

lead into the same movie appearing in multiple rows. Therefore, finding a way to fit 

every single person that worked in a movie in just one row was an important step in the 

setup of the dataset.  
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The concluding dataset consisted of 21,508 rows and the following 14 columns: 

title_id, title_name, rating, year, numVotes, genre1, genre2, genre3, actor1, actor2, 

actor3, actor4, director_name, and runtime. From this dataset, it was possible to obtain 

the table X and table Y that were used for the machine learning section (Section 3) of this 

work. Table X consisted of 21,508 rows and 10 columns which were: year, genre1, 

genre2, genre3, actor1, actor2, actor3, actor4, director, runtime. Table Y consisted of 

21,508 rows and 1 column which was the rating column. 

 

2.1.2 DATA STATISTICS 

With a final dataset table ready to implement into our program, it was important 

to understand the contents of it regarding every column and row.  To start, ratings were 

separated from the rest of the columns since those were the values that the model was 

meant to predict. These were stored in a separate table called Y, and the rest of the data 

was stored in a table called X (as described in Figure 2.1). 

Regarding table Y, the data contained float values that represented the rating of 

the movie from a range of 1 through 10. Figure 2.2 demonstrates a histogram with the 

number of movies per rating in the ratings column (Hunter 2007). 
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Figure 2.2. Movies per ratings in the ratings column 

 

On table X, there were a total of 13 columns, which were: title_id, title_name, 

year, numVotes, genre1, genre2, genre3, actor1, actor2, actor3, actor4, director_name, 

and runtime. First, the column “year” contained the release year of a movie released 

between 1912 and 2021. A histogram that displays the distribution of these movies by 

their release date is shown on Figure 2.3. 

 

Figure 2.3. Distribution by release date in the year column 
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As it can be seen on Figure 2.2, there were movies stored from every single 

decade since the first release in 1911. As dates get more recent, the more data available 

there is. It was very beneficial to have many movies from 2010’s decade, since the goal 

of this thesis is to predict movies that will be released in the upcoming years after 2020. 

The reason for this is that films from the last decade have the same viewing audience and 

many similar features than movies that will be released in years to come. 

As for other columns, the actors were separated in the four columns: actor1, 

actor2, actor3, and actor4. In one hand, the actor1 contained the principal actor or actress 

of a movie. In the other hand, actor 2, actor3, and actor4 were actors with a secondary 

role of a movie, but still an important part of the cast. There were some cases where some 

movies would not contain more than one or two actors, so a ‘0’ was inserted for the 

missing values in that specific row. Figures 2.4, 2.5, 2.6, and 2.7 show the count of the 

top 25 results for each of the actor columns respectively. 

 

Figure 2.4. Top 25 actors count in the actor1 column 
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Figure 2.5. Top 25 actors count in the actor2 column 

 

 

Figure 2.6. Top 25 actors count in the actor3 column 
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Figure 2.7. Top 25 actors count in the actor4 column 

 

Some of other columns present on table X were genre1, genre2 and genre3. The 

first one of these represented the most relevant genre to categorize the movie. The other 

two were situational because if a movie only contained one genre instead of two or 

three, a 0 was inserted in these remaining columns to represent that the movie had no 

more genres. Figures 2.8, 2.9, and 2.10 demonstrate the distribution (count) of each of the 

genres respectively with bar plots. 
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Figure 2.8. Distribution of genres in the genre1 column 

 

 

Figure 2.9. Distribution of genres in the genre2 column 
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Figure 2.10. Distribution of genres in the genre3 column 

 

Finally, the last two columns in the table to discuss are the director_name and 

runtime columns. They contained the director’s name and the length in minutes of the 

movies respectively. Figure 2.11 shows the count of directors for the first 25 results, and 

Figure 2.12 displays the demonstrates a distribution of length in minutes in the runtime 

column. 
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Figure 2.11. Top 25 directors count in the director_name column 

 

 

Figure 2.12. Distribution of length in minutes in the runtime column  

 

Other columns from the dataset such as: title_id, title_name, numVotes, had to be 

dropped at the moment of applying the machine learning algorithm. The title_id and 

title_name columns because they were used for only identification purposes, and the 

numVotes column because a new movie will never have any votes before release, so it 
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would not make sense to train the model with it included. Table 2.1 displays the initial 

table for the Movie Ratings dataset. 

title_id name rating year votes genre1 genre2 genre3 actor1 actor2 actor3 actor4 director runtime 

tt0780504 Drive 7.8 2011 599536 Action Drama 0 Ryan Gosling Bryan 

Cranston 

Albert 

Brooks 

Carey 

Mulligan 

Nicolas 

Winding Refn 

100 

tt0816692 Interstellar 8.6 2014 1637059 Adventure Drama Sci-fi Matthew 

McConaughey 

Anne 

Hathaway 

Jessica 

Chastain 

Mackenzie 

Foy 

Christopher 

Nolan 

169 

tt0308508 Step Into 

Liquid 

7.4 2003 2668 Documentary Sport 0 Robert August 0 0 0 Dana Brown 87 

tt2184339 The Purge 5.7 2013 214294 Horror Sci-fi Thriller Ethan Hawke Lena 

Headey 

Max 

Burkholder 

Adelaide 

Kane 

James 

DeMonaco 

85 

 

Table 2.1. Initial table of 14 columns of the movie ratings dataset 

 

Then, after preparing the table for the machine learning stage, the table was 

modified to look like Figure 2.13, where ratings (Table Y) were separated from the rest 

of the columns (Table X) since they were the values meant to be predicted.  

 

Figure 2.13. Tables X and Y of the movie ratings dataset  
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2.2 HYPERSPECTRAL IMAGING  

The dataset collected by the AUM-Hyperspectral team (Kursun et al. 2022), 

which is yet to be finalized, currently has 462 bands with the goal of cloud detection, 

classification, and segmentation. The images collected are recorded with the Resonon 

Pica XC2 camera, which imaging system acts as a “push broom” scanning spectrometer 

with 462 narrow wavelength bands ranging from 400 nm to 1000 nm. Moreover, 

regarding the data classification, it is not the shape of the cloud chunks that is the most 

predictive; in fact, it is the spectral signature due to the scatter/reflective properties of the 

cloud particles that will help the most for this main task of individual pixel classification 

(see Figure 2.14). Once the single pixel classification is done effectively, then some form 

of postprocessing can be performed for segmenting a hyperspectral image into regions 

according to cloud type or clear sky.  

 

 

Figure 2.14. A render of a hyperspectral image collected by the AUM-Hyperspectral 
team. 
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As it was mentioned before, AUM dataset has not been completed yet, which is 

why this work will be using two benchmark datasets to test the categorical-boosting-

classification method that was developed using CatBoost (Section 3.2). These two 

datasets are well-known HSI datasets captured by the AVIRIS (Airborne Visible Infrared 

Imaging Spectrometer) sensor. The first dataset, called Indian Pines, is composed of 

images of 145×145 pixels in size, with each pixel of the image represented with 204 

spectral channels (bands) in the 400-2500 nm range of wavelengths (Grana et al. 2018). 

The dataset includes 17 classes (class-0 is unlabeled and the other 16 classes are various 

crops, grass, and woods); Table 2.2 lists the class names and the number of pixels per 

class in the dataset.  

Class ID Class Name Number of Pixels 

1 Alfalfa 54 

2 Corn-notill 1434 

3 Corn-mintill 834 

4 Corn 234 

5 Grass-pasture 497 

6 Grass-trees 747 

7 Grass-pasture-mowed 26 

8 Hay-windrowed 489 

9 Oats 20 

10 Soybean-notill 968 

11 Soybean-mintill 2468 

12 Soybean-clean 614 

13 Wheat 212 

14 Woods 1294 

15 Build.-Grass-Trees-Drv. 380 

16 Stone-Steel-Towers 95 

Table 2.2. The class names and their respective number of pixels of the Indian Pines 
dataset 
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With these class labels it is possible to obtain the ground truth image of the HSI 

picture, which in other words, is the image with the true values that the machine learning 

will use for identifying the class labels. Figure 2.14 demonstrates the RGB render of the 

image, while Figure 2.15 shows the class labels (ground truth). 

 

Figure 2.15. An RGB render of the Indian Pines HSI image 

 

 

Figure 2.16. Ground truth image of the Indian Pines HSI image 
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The second dataset, called Salinas, consists of images of 512 × 217 pixels in size 

with 204 spectral bands (Grana et al. 2018). The class labels and the number of pixels per 

class in the dataset are listed in Table 2.3. 

Class ID Class Name Number of Pixels 

1 Broccoli (green weeds 1) 2009 

2 Broccoli (green weeds 2) 3726 

3 Fallow 1976 

4 Fallow (rough plow) 1394 

5 Fallow (smooth) 2678 

6 Stubble 3959 

7 Celery 3579 

8 Grapes (untrained) 11271 

9 Soil (vineyard develop) 6203 

10 Corn (senesced green weeds) 3278 

11 Lettuce (romaine 4wk) 1068 

12 Lettuce (romaine 5wk) 1927 

13 Lettuce (romaine 6wk) 916 

14 Lettuce (romaine 7wk) 1070 

15 Vineyard (untrained) 7268 

16 Vineyard (vertical trellis) 1807 

Table 2.3. The class names and the number of pixels in each class of the Salinas dataset 

 

 These class labels include vegetables and various types of soils where there can 

be differences in the reflectance (fraction of sunlight reflected from the surface) for the 

same wavelength interval of each pixel. To demonstrate this, a plot with 5 different class 

labels was created using their mean wavelength channel value compared to the 

reflectance, shown in Figure 2.17. 
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Figure 2.17. Wavelength channel and reflectance values of 5 class labels from the Salinas 
dataset. 

 

It is also important to clarify that pixels for each of these class labels are similar 

but not identical. In some cases, with considerable differences between their reflectance 

values. To demonstrate this, Figure 2.18 shows the wavelength channel and reflectance 

values for 5 different pixels of the Fallow class-label.  

 

Figure 2.18. Wavelength channel and reflectance values of 5 different pixels for the 
Fallow class-label 
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Moreover, the RGB render of the image is shown in Figure 2.19, while the class 

labels (ground truth) are shown in Figure 2.20. 

 

 

Figure 2.19. An RGB render of the Salinas HSI image 

 

 

 

Figure 2.20. Ground truth image of the Indian Pines HSI image 
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CHAPTER 3: MACHINE LEARNING MODEL 

3.1 MOVIE RATINGS  

With the use of the Movie Ratings dataset, several approaches were performed 

utilizing CatBoost in order to test its effectiveness and maximize the chances of a high-

accuracy machine learning model (Wang 2022). First, CatBoost was applied directly 

(Section 3.1.1) without preprocessing data, where its performance was compared to one-

hot encoding (Harris & Harris 2012). Then, another approach called the Mean-based 

approach (Section 3.1.2), focused on calculating the mean of every actor’s previous 

ratings in order to predict future ratings based on those preceding movies. Finally, the last 

method called the Word-embedding approach (Section 3.1.3), which consisted of 

applying word embedding to both the actors and genres columns in order to vectorize the 

data for numerical representation (Mikolov et al. 2013). 

3.1.1 DIRECT-CATBOOST APPROACH 

This approach was based on directly providing the training and testing data to the 

CatBoost algorithm with any sort of preprocessing or data conversion. What made this 

possible was the use of a parameter in the CatBoostRegressor function called 

“cat_features”, which describes the categorical features that will be given to the model. 

Therefore, all the columns that were considered categorical were inserted on this 

parameter, which were: actor1, actor2, actor3, actor4, director_name, genre1, genre2, and 

genre3. Typically, a machine learning model is not able to understand data that is not in 

numerical format, which is why in situations like this one the common approach is to 
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apply one-hot encoding. The difference is that with the Catboost algorithm one can 

automatically do the categorical-to-numerical conversion by specifying which are the 

categorical features in the model. Therefore, to test the reliability of this automatic 

conversion, it was decided to apply one-hot encoding before giving the data to the 

CatboostRegressor function in order to test if the results would be similar (McKinney 

2011). This process is exhibited on Table 3.1, where the table only contains genres in 

order to simplify the demonstration of one-hot encoding. 

year genre1 genre2 genre3 runtime 

2004 Action Adventure Animation 115 

2003 Action Crime Thriller 111 

2006 Action Adventure Thriller 126 

2003 Comedy 0 0 85 

2002 Drama Fantasy History 99 

 

Table 3.1. Table of genres ready for one-hot encoding 

 

Then, for every different categorical value present in this table, a new column is 

created that will contain a 1 or 0 depending on whether the rating of a specific row has 

that category or not. A demonstration of this is displayed on Table 3.2. 

year runtime Action Adventure Animation Crime Thriller Comedy Drama Fantasy History 

2004 115 1 1 1 0 0 0 0 0 0 

2003 111 1 0 0 1 1 0 0 0 0 

2006 126 1 1 0 0 1 0 0 0 0 

2003 85 0 0 0 0 0 1 0 0 0 

2002 99 0 0 0 0 0 0 1 1 1 

 

Table 3.2. Table of genres after one-hot encoding 



27 
 

It is important to point out that a variation of one-hot encoding was used in this 

thesis. Instead of inserting a value of 1 for every row that had a present genre in one of 

the columns, it was decided to use values of 1, 0.8 or 0.6 depending on the situation. If a 

movie had its principal genre (genre1) in the column, then it would receive a 1. If it 

contained a secondary genre (genre2) then it would be a 0.8. If it had a third genre 

(genre3) then a 0.6. The logic behind this is that the most relevant genre of the movie 

should receive a heavier weight in the calculation of the resultant rating. The machine 

learning model was able to understand this by using the aforementioned variation of one-

hot encoding. 

Then, after running both the one-hot encoding and Direct-Catboost programs 

using genres as the training data, the one-hot encoding version had approximately the 

same results of the Direct-Catboost version, obtaining 0.60 and 0.58 respectively, proving 

this way that Catboost can easily convert categorical data into numerical with only the 

use of an extra parameter in its function and still produce similar results as manually 

converting that data. 

With this knowledge in hand, there was enough confidence to give the 

CatboostRegressor function all the categorical data at once (including actors and 

directors). This extra data provided, was able to improve the model performance to a 

coefficient of correlation of 0.65. In a nutshell, Figure 3.1 showcases the algorithm for 

the Direct-CatBoost approach.  
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DIRECT-CATBOOST ALGORITHM 

1)Select columns: year, genre1, genre2, genre3, actor1, 
actor2, actor3, actor4, director_name, runtime for table X 
and ratings for table Y 

2) Train-test split the data using 0.15 as the size of the 
split parameter. 

3) Declare the CatBoostRegressor function using the 
categorical data (genre1, genre2, genre3, actor1, actor2, 
actor3, actor4, director_name) in cat_features 

4) Fit the model using X_train, Y_train, and then predict 
the X_test table 

5) Compare y_test with y_pred in order to calculate the R-
score correlation result 

Figure 3.1. Pseudocode for the Direct-Catboost approach program 

 

3.1.2 MEAN-BASED APPROACH 

This model consisted on selecting every distinct person of an actor or director 

column and calculating a mean rating for them. In order to implement this, a Python 

dictionary to store the mean rating of every different item was needed, where the key of 

the dictionary was the actor or director in the column, and the respective value was the 

mean rating of that person. For every movie in the dataset, the four actor columns and the 

director column were selected, along with their ratings, year of release, and runtime. The 

reason for only selecting these columns in this approach, was to determine if previous 

successes or failures of actors and directors could be a factor of determining future 

ratings for upcoming movies. The concept behind this approach is explained in Eq. 1. 
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𝑋 =
∑ ௑ೖ
೙
ೖసభ

௡
         (1) 

Where: 

𝑋௞  = the rating of the kth movie 

𝑛 = number of movies 

𝑋 = the mean rating  

 The mean rating X was calculated according to Eq. 1 by summing together each 

of the person’s previous movie ratings (X1, X2, X3… Xk) and dividing by the number of 

movies that person had previously acted or directed on. A demonstration of how the data 

was transformed is given in Tables 3.3, 3.4, and 3.5.  

year actor1 actor2 actor3 actor4 genre1 genre2 genre3 director runtime 

2003 Craig T. 

Nelson 

Samuel L. 

Jackson 

Holly Hunter Jason Lee Action Adventure Animation Brad Bird 115 

2003 Donald 

Sutherland 

Mark 

Wahlberg 

Edward 

Norton 

Charlize 

Theron 

Action Crime Thriller F. Gary Gray 111 

2006 Tom Cruise Michelle 

Monaghan 

Ving 

Rhames 

Philip 

Seymour 

Hoffman 

Action Adventure Thriller J.J. Abrams 126 

2003 Adam 

Goldberg 

Andy Dick Judy Greer Mario Van 

Peebles 

Comedy 0 0 Jonathan 

Kesselman 

85 

2002 Sergey 

Dreyden 

Mariya 

Kuznetsova 

Leonid 

Mozgovoy 

0 Drama Fantasy History Aleksandr 

Sokurov 

99 

 

Table 3.3 Initial table of values for the Mean-based approach 
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Then, the genres are removed since they will not be considered on this approach 

(mean values will only be calculated for actors and directors). This is shown in Table 3.4. 

year actor1 actor2 actor3 actor4 director runtime 

2003 Craig T. Nelson Samuel L. Jackson Holly Hunter Jason Lee Brad Bird 115 

2003 Donald Sutherland Mark Wahlberg Edward Norton Charlize Theron F. Gary Gray 111 

2006 Tom Cruise Michelle Monaghan Ving Rhames Philip Seymour Hoffman J.J. Abrams 126 

2003 Adam Goldberg Andy Dick Judy Greer Mario Van Peebles Jonathan Kesselman 85 

2002 Sergey Dreyden Mariya Kuznetsova Leonid Mozgovoy 0 Aleksandr Sokurov 99 

 

Table 3.4 Table containing only actors and directors before transforming values 

 

Finally, the mean values are calculated for every categorical data in the table, 

demonstrated in Table 3.5. 

year actor1 actor2 actor3 actor4 director runtime 

2003 8.0 6.32 6.68 6.15 7.46 115 

2003 6.88 6.47 7.14 6.75 6.76 111 

2006 6.86 6.39 6.58 6.56 7.22 126 

2003 6.1 5.85 6.43 6.1 5.65 85 

2002 7.4 7.4 7.4 7.4 7.4 99 

 

Table 3.5 Table containing only actors and directors after transforming values 

 

As shown in Table 3.5, every actor and director received a score based on their 

previous movies and their respective ratings. There were rare scenarios when one or 

many members of the cast had not been in a movie ever before, these cases were handled 

by giving those persons an average rating based on the rest of the cast ratings. An 

example of this is shown in the last row of Table 3.5 where only one actor had previous 

movies in the dataset. Therefore, the mean rating of that actor was used for rest of the 
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cast. Likewise, there can also be even a rarer scenario which is the case when a movie has 

an entire cast that has never acted/directed in a film before. In this case, there was no 

choice but to give a value of 6 to every member of the cast (a common average rating) 

since there was no possible way to assign a mean rating for any member of the cast in 

that movie. In conclusion, the final algorithm for the Mean-based approached is 

demonstrated in Figure 3.2. 

MEAN-BASED ALGORITHM 

1) Select columns: year, actor1, actor2, actor3, actor4, 
director_name, runtime for table X and ratings for table Y 

2) Train-test split the data using 0.15 as the size of the 
split parameter. 

3) Store every distinct item of the actor1, actor2, actor3, 
actor4, and director_name columns in a dictionary, and use 
each of these items (the persons’ names) as their key. 
Then, for every key, their value will be the mean rating of 

that person.  

4) Transform the items of X_train that are present in the 
dictionary from the keys to their corresponding values  

5) Repeat step 4 for X_test but create an exception in the 
scenario where the key is not found in the dictionary 
(value of 0). To handle the 0s, calculate an average of the 
items of the same row as the 0 is, and replace every 
instance of that 0 with the calculated average number. 

5) Fit the model using X_train,Y_train, and then predict 
the X_test table 

6) Compare y_test with y_pred in order to calculate the R-
score correlation result 

Figure 3.2. Pseudocode for the Mean-based approach program 
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3.1.3 WORD EMBEDDING APPROACH 

This model was based on representing words (string values) for text analysis, 

where every string received by the model was transformed into numerical vector 

representations. The idea was that if words had similar meaning, they would be 

represented with similar vector values (Goldberg et al. 2014). Every categorical feature in 

the dataset was stored in a list where the vectorization took place (Rehurek & Sojka 

2011). For every row of the dataset there would be two different vector representations 

taking place: one for the genres of the movie and another for the actors and director of 

that title (Oliphant 2006). 

Specifically, every row would convert their genre values into a 40-dimensional 

vector representation, and the movie’s cast to another 40-dimensional representation. One 

thing to note is that in this thesis, for each of the forty dimensions, the first twenty were 

always assigned for only the first actor or first genre, and then the other twenty 

dimensions would be used to represent the rest of the cast or the rest of the genres. This 

was done in order to test how much of an impact the lead actor and lead genre could 

make in the ratings prediction. After this, a new table was created which contained all 

these new vector values, so that the machine learning model could apply the training and 

testing necessary. Tables 3.7 and 3.8 demonstrate the data before and after the 

vectorization took place. 
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year actor1 actor2 actor3 actor4 genre1 genre2 genre3 director runtime 

1980 Anthony 

Hopkins 

John Hurt Anne Bancroft John Gielgud Biography Drama 0 David Lynch 124 

2008 Ray 

Stevenson 

Dominic West Julie Benz Doug 

Hutchison 

Action Crime Drama Lexi 

Alexander 

103 

2014 Cameron Diaz Leslie Mann Nikolaj Coster-

Waldau 

Kate Upton Comedy Romance 0 Nick 

Cassavetes 

109 

2010 Benicio Del 

Toro 

Anthony 

Hopkins 

Simon Merrells Emily Blunt Drama Fantasy Horror Joe Johnston 103 

1999 Chris 

O'Donnell 

Renée 

Zellweger 

Artie Lange Ed Asner Comedy Romance 0 Gary Sinyor 101 

 

Table 3.7. Initial table of values for the Word-embedding approach 

 

 

year runtime gd1 gd2 gd3 … gd38 gd39 gd40 pd1 pd2 pd3 … pd38 pd39 pd40 

1980 124 -2.235 0.092 2.895 … -1.219 -2.284 -1.322 -0.008 -0.034 -0.003 … -0.025 -0.009 0.006 

2008 103 -2.235 0.092 2.895 … -0.822 -1.868 -1.143 0.009 -0.023 0.035 … -0.066 -0.074 -0.036 

2014 109 -1.282 -0.128 2.234 … -1.412 -3.251 -2.057 -0.015 0.033 -0.041 … -0.014 -0.023 -0.014 

2010 103 -0.553 0.028 0.657 … -0.349 -0.705 -0.486 0.049 0.045 0.014 … 0.016 -0.023 -0.013 

1999 101 -2.235 0.092 2.895 … -0.952 -2.433 -1.427 0.010 -0.013 -0.009 … -0.033 -0.038 -0.0007 

 

Table 3.8. Table of values after word-embedding vectorization 

 

As shown on Table 3.8, the table consisted of 82 columns where every gd column 

stood for “genre dimension” and every pd column for “person dimension”. Several 

dimension sizes were tried (from 10 to 80), but 40 was the best option in terms of results. 

Lastly, in Figure 3.3 the algorithm for the Word-embedding approach is shown.  
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WORD-EMBEDDING ALGORITHM 

1)Select columns: year, genre1, genre2, genre3, actor1, actor2, 
actor3, actor4, director_name, runtime for table X and ratings 
for table Y 

2) Train-test split the data using 0.15 as the size of the split 
parameter. 

3) Store every column that contains categorical data from X_train 
into a list including their missing values (0’s)  

4) Copy the values of the list (without the 0s) to another list. 
Then, apply Word2Vec() model with vector_size = 20 to this new 
list  

5) Create a for loop to assign every vector value of the genre1 
column into a list, then do the same for actor1, but store their 
vector values into a second list. 

6) Create a for loop to assign every vector value of genre 2 and 
genre 3 into a third list, and then actor 2, actor 3, actor 4, 
director_name into a fourth list.   

7) Use the first list that has the vectors of genre 1 to create 
20 dimensions (20 columns). Then, use the second list which has 
the vectors of actor1 to create 20 more dimensions (20 columns).  

8) Repeat step 7 but using the third list (containing genre2, 
genre3) to create 20 dimensions. Then use the fourth list 
(containing actor2, actor3, actor4, director_name) to create 20 
more dimensions. 

9) Append the dimensions of genres and actors respectively to 
have a total of 40 columns (dimensions) of genres vector values, 
and 40 columns (dimensions) of people (actors and directors), 
then append this 80-dimensional table to X_train  

10) Do steps 3 through 9 but for X_test instead 

11) Fit the model using X_train,Y_train, and then predict the 
X_test table 

12) Compare y_test with y_pred to calculate the R-score 

Figure 3.3. Pseudocode for the Word-embedding approach program 
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3.1.4 MODEL ROADMAP         

 This section depicts the whole process, from start to finish, of all the necessary 

steps needed in order to calculate the movie ratings predictions using any of the 

approaches explained in this section. Figure 3.4 demonstrates a roadmap with each of 

these important steps (Taei 2022). 

 

 

Figure 3.4. Ratings Predictor Application roadmap 
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3.2 HYPERSPECTRAL IMAGING  

While the high-resolution representation of an individual pixel in HSI (having 

many narrow wavelengths covering a large portion of the spectrum from near-ultraviolet 

to near-infrared range) makes discrimination of many more classes from each other using 

just a single pixel (GISGeography 2022), reflectivity/irradiances in nearby wavelength 

intervals are generally very redundant and dimensionality reduction methods (Alpaydin 

2014) are needed for band selection for HSI systems (Sellami et al. 2019).  

Applying some feature selection algorithms with high time complexity such as 

sequential backward selection (with time complexity of O(n2)) is almost prohibitive for 

such high dimensional datasets. Moreover, feature selection algorithms need to be further 

adapted to HSI domain, because the band selection for the classification task should also 

help determine important ranges of the spectrum. Feature selection process should not 

necessarily treat each one of the hundreds of wavelengths of the spectrum as separate or 

unrelated variables, because selection of individual wavelengths of the spectrum may not 

be justified and the task could be simplified by finding a few wavelength ranges of 

greatest importance.  

For example, the AUM-hyperspectral team has identified four intervals to be the 

most useful for cloud classification. As shown in Figure 3.5, there are four intervals 

(highlighted with red dash-lines) identified by the domain expert Randy Russell in the 

team. Representing one interval as one categorical variable (i.e., creating a categorical 

variable for that interval by representing it with the index of clustering applied to the 

dataset using the variables in that interval only) can be a good approach to utilize and test 
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the capabilities and applicability of CatBoost or other comparable boosting methods to 

the HSI domain.  

 

Figure 3.5.  Signatures of clear sky (SKY), thin clouds (THIN), clouds (CLD), and dark 

clouds (DARK) in 462 bands of the HSI images being collected by the AUM 

Hyperspectral team. 

 

The proposed algorithm called Clustered-Shifting-Window Boosting Algorithm 

presented in Figure 3.6 is first applied on the two benchmark datasets: Indian Pines and 

Salinas. The algorithm will be tested on the AUM HSI Cloud dataset once it is finalized.  
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Clustered-Shifting-Window Boosting Algorithm 
Inputs:  

X[N,D]: Train-set of N samples and D features 
y[N]: Class-labels of the N samples 
 
X_test[M,D]: Test-set of M samples and D features 
Y_test[M]: Class-labels of the M test samples 
 
w: Window length 
s: Stride of windows 
K: Number of clusters in each window 

 
Output: 

Model: Classifier (and centroids) 
Acc: Accuracy on the test set 

 
Begin: 
 
Num_Windows = 0 
 
for win_start = 1:s:D 
 win_end = win_start + w 
 windowed_data = X[:, win_start:win_end] 
 centers = Kmeans(windowed_data, K) 
   

train_centers = Find_Nearest_Center(X, centers) 
test_centers = Find_Nearest_Center(X_test, centers) 

   
Categorical_Trainset[:, Num_Windows] = train_centers 
Categorical_Testset[:, Num_Windows] = test_centers 

 Num_Windows = Num_Windows + 1 
 
end for 
 
Model = Train_Boost_Classifier(Categorical_Trainset, y) 
Acc = Test_Classifier(Model, Categorical_Testset, y_test) 

Figure 3.6. Clustered-Shifting-Window Boosting Algorithm for HSI dataset 
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3.2.1 MODEL ROADMAP 

This section demonstrates all the necessary steps needed in order to predict pixels 

from an HSI image. Figure 3.7 demonstrates a roadmap with each of these important 

steps (Taei 2022). 

 

Figure 3.7. HSI Pixel Predictor Roadmap 
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CHAPTER 4: EXPERIMENTAL RESULTS 

 In this chapter, several results were calculated from the Movie Ratings dataset 

(Section 4.1) utilizing the approaches previously explained (Section 3.1. Regarding 

hyperspectral imaging, results of the HSI classification (Section 4.2) were calculated with 

their respective sensitivity of different hyperparameters. 

4.1 MOVIE RATINGS RESULTS 

For each of the approaches in this section, their results are demonstrated 

calculating the coefficient correlation of the model and displaying a scatterplot to 

visualize the predictions results. 

4.1.1 DIRECT-CATBOOST APPROACH 

This model obtained 0.65 coefficient of correlation, which was the highest 

accuracy achieved on this thesis for the Movie Ratings dataset. The result can be 

showcased in the scatterplot in Figure 4.1. 

 

Figure 4.1. Scatterplot result for the Direct-Catboost approach 
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 4.1.2 MEAN-BASED APPROACH 

This model obtained 0.58 coefficient of correlation, which was promising since it 

only used actors and directors without the use of genres columns. This proved that these 

columns are essential for predicting unseen data on this dataset. The scatterplot in Figure 

4.2 displays this result. 

 

Figure 4.2. Scatterplot result for the Mean-based approach 

 

4.1.3 WORD-EMBEDDING APPROACH 

This model obtained 0.45 coefficient of correlation, which was the lowest score 

from all of the approaches. It can be demonstrated that word embedding was not 

remarkably successful for this dataset, especially because it could not predict values with 

low ratings as shown in Figure 4.3. 
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Figure 4.3. Scatterplot result for the Word-embedding approach 

 

4.2 HYPERSPECTRAL IMAGING RESULTS 

As shown in Table 4.1 (using the Salinas dataset), for each window, a single 

categorical variable with K categories is created by K-means and these are stacked 

horizontally to create a dataset with clustered categorical features to train/test the 

boosting model. The window length, w, and the stride amount, s, determine the number 

of categorical features created (i.e. the number of intervals). The results reported are the 

means and standard deviations of 10 runs (each with 10% vs 90% train-test splits). 

 

 Stride = 5 
Window 

length = 10 

Stride = 10 
Window 

length = 10 

Stride = 5 
Window 

length = 20 

Stride = 10 
Window 

length = 20 

K = 10 86.93  0.32 85.39  0.21 86.74  0.48 86.06  0.58 

K = 20 88.06  0.24 86.70  0.16 88.73  0.17 87.89  0.28 

K = 30 88.36  0.13 86.95  0.15 89.13  0.13 88.5  0.19 

Table 4.1. Sensitivity of the hyperparameters (various K for K-means, window length and 
window stride) for Salinas dataset. 
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As the categorical dataset has fewer features, it is more suitable for feature 

selection and classification using boosting, which is among the goals in this line of work. 

In the pixel classification task of 17 classes (16 target classes of various vegetation etc. 

and the unlabeled pixels with class-label of 0) on the test set, accuracies with the 

proposed boosting method yields favorable results. For comparison with the use of the 

original raw variables (i.e., 204 bands), various popular benchmark classifiers 

(Fernandez-Delgado et al. 2014; Pedregosa et al. 2011) are also used. The results on the 

Indian Pines and the Salinas datasets are reported in Table 4.2.  As before in Table 4.1, 

the results reported in Table 4.2 are the means and standard deviations of 10 runs (each 

with 10% vs 90% train-test splits).  

 

 Indian Pines Salinas 

K-NN (K=1) 63.49 ± 0.28 86.61 ± 0.11 

K-NN (K=3) 65.87 ± 0.40 87.30 ± 0.14 

K-NN (K=5) 66.81 ± 0.32 87.40 ± 0.14 

Boosting on the original features 71.88 ± 0.55 88.38 ± 0.12 

Proposed K-means + Boosting 71.89 ± 0.60 89.13 ± 0.13 

Table 4.2. Comparisons on HSI classification results 
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CHAPTER 5: CONCLUSION 

 In this thesis, machine learning algorithms based on categorical boosting were 

applied to different datasets with the goal of obtaining high-accuracy results with 

dimensionality reduction. In the Movie Ratings dataset, CatBoost was used to handle 

categorical data effectively by directly specifying the categories on the CatBoost 

regressor function (instead of trying the infeasible one-hot-encoding or trying to adapt a 

word-embedding method to deal with the genre and actor categories in the data). Efforts 

in adapting/applying the boosting algorithms studied in this thesis to the hyperspectral 

cloud segmentation project conducted by the AUM Hyperspectral team led to an 

algorithm that was named the Clustered-Shifting-Window Boosting Algorithm for 

classifying hyperspectral image pixels. The proposed algorithm applies K-Means 

clustering to create new categorical variables, which can be used either to reduce 

dimensionality or to augment the original HSI dataset. Experiments on the Indian Pines 

and Salinas datasets showed favorable results.  

As future work, the algorithms developed in this thesis will be applied to the final 

version of the cloud dataset that is currently under preparation for the AUM-

Hyperspectral research grant.  
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