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ABSTRACT 

Auburn University at Montgomery 
Chemistry Department has partnered with 
the Computer Science Department to 
participate in a National Science Foundation 
research project. This study utilizes a 
hyperspectral imaging camera to capture 
cloud data images. A calibrated spectrum 
comprised of 462 narrow wavelength bands 
is recorded at each pixel of the image. These 
images have been segmented using the 
software system Wolfram Mathmatica. The 
following three types of thresholding 
techniques were implemented to configure 
the segmented images: Otsu, Kapur’s 
Entropy, and Kittler-Illingworth Minimum 
Error. The purpose of this study is to 
determine whether normalizing the data by 
the average radiance yields a better 
segmentation.  Each pixel of a sky image is 
represented by a spectrum showing how 
monochromatic radiance varies with 
wavelength. One channel was used to test 
normalization. This channel was 
proportional to total radiance for all sky 
conditions.  

 

1 INTRODUCTION 

Hyperspectral imaging cameras are used to 
capture the light spectrum of each pixel in a 
specified image. These cameras are used in a 
variety of applications such as the medical 
field, agriculture, government, etc. The 
information obtained by these analyses has 
contributed to countless discoveries. 
Hyperspectral imaging cameras have been 
used to characterize wounds, locate invasive 
weeds, and even for surveillance and 

reconnaissance against hard to detect targets. 
In this study, the Resonon Pika XC2 
Hyperspectral imaging camera was used to 
capture images of numerous types of clouds. 
The purpose of this study is to determine 
whether normalizing images by the average 
radiance yields a better image segmentation. 

 

 

 
Figure 1: Resonon Pika XC2 Hyperspectral 
Imaging Camera with specifications 

2 DATA COLLECTION DETAILS 

 

2.1 Elevation and Azimuth  

Figure 2: Elevation and Azimuth Diagram 
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To relate radiance to radiant energy received 
from clouds it is necessary to know the 
elevation of each pixel in the image. The 
azimuth of each pixel was also recorded. 
Azimuth is defined as the “angle between 
North, measured clockwise around the 
observer's horizon, and a celestial body (sun, 
moon).” [9] Using a compass to specify 
azimuth angle, we rotated the Resonon 
camera to various angles. Once the camera 
was positioned, we used the Spectronon 
Software to set parameters and begin 
scanning.  

2.2 Resonon Pika XC2 Interior 

The inside of the Resonon Pika XC2 houses 
collimating lens that assists in controlling 
the field of view and spatial resolution. This 
curved optical lens ensure that the light rays 
enter the Prism-Grating-Prism (PGP) are 
parallel.

 

Figure 3: Resonon Pika XC 2 Interior 

2.3 Spectronon Software- Camera 
Operation 

The Spectronon Software allows us to 
program the specifics of how we want the 
camera to capture the image. There are three 
main parameters that were adjusted: 
integration time, frame rate and scan rate. 
Integration time is defined as “the length of 
time during which the sensing elements are 
collecting charge between transfers to the 
transport registers.”[1] In simpler terms, this 
is how long the sensor is exposed to light. 
Frame rate is the speed or frequency at 
which frames are captured. Frame rate is 

measured in hertz or frames per second. 
Frame rate is responsible for the smoothness 
of an image. Scan rate describes the rate at 
which the camera rotates while frames are 
being taken. To synchronize the scan rate 
with the rate of which we are taking the 
frames, we adjusted the scan and frame rate. 
The scan rate was set to 0.93 seconds and 
the frame rate was set to approximately 45 
frames per second. The integration rate 
occasionally varied but remained between 
9.0-12.0 ms. Once these parameters are set, 
the Pika XC2 rotates around a vertical axis, 
sweeping the integration field of view across 
the sky.  

2.4 Spectronon Software – Data 
Representation 

 The Spectronon software provides an RGB 
render of the data cube using three user-
selected wavelengths. The user can then see 
the spectral graph of that point that shows 
the radiation levels at numerous 
wavelengths. Figure 4 is a scanned image 
that is pinpointed at sample 260, line 85. 
This sample and line combination is a bright 
section of the captured cloud.  
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Figure 4: Scan_07-18-
2022_0946_AZ075_EL20_L_D-R1 Sample 260 Line 
85 

Figure 5: Scan_07-18-
2022_0946_AZ075_EL20_L_D-R1 Spectra  Graph 
Sample 260 Line 85 

The corresponding spectrum also displays 
the wavelengths selected for producing the 
RGB render as seen in figure 5. The 
maximum monochromatic radiance level is 
above 24000 rad. Bright clouds can have 
higher levels of radiation because they 
reflect and scatter more of the incoming 
radiation from the sun than darker clouds.   

Figure 6 displays a point at sample 359 line 
192 which is a dark portion of cloud. The 
corresponding spectra in figure 7 shows how 
dark clouds have lower levels of radiation 
compared to bright clouds because they 
receive less incoming radiation from the sun. 
This is due to their higher opacity or ability 
to absorb light. The bottoms of high opacity 
clouds are shaded from direct sunlight by 
the cloud above, and little solar radiation is 
able to penetrate to the bottom of the cloud. 

Figure 6: Scan_07-18-
2022_0946_AZ075_EL20_L_D-R1 Sample 359 Line 
192 
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Figure 7: Scan_07-18-
2022_0946_AZ075_EL20_L_D-R1 Spectra Graph 
Sample 359 Line 192 

3 IMAGE SEGMENTATION 
PROCESS 

3.1 Selection of Normalization 
Wavelength 

Radiance is the rate at which radiant energy 
is received per solid angle subtended by an 
image pixel. To segment an image into clear 
sky and cloud, a normalized grayscale image 
is produced by dividing the radiance at each 
pixel by the radiance at the normalization 
wavelength. The monochromatic radiance at 
586.3 nm is proportional to the average 
radiance over wavelength for pixels of all 
sky conditions. By selecting this wavelength 
as the normalization wavelength, the 
normalized radiance shows the distribution 
of radiant energy between the various 
wavelength bands. The spectra shown in 
figures 8 & 9 demonstrate the effect of 
normalization on spectra. 
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Figure 8: Unnormalized Cloud and Sky 
Definitions Comparison 
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Figure 9: Normalized Cloud and Sky 
Definitions Comparison 
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3.2 Normalized Vs. 
Unnormalized Data 

Normalization is the process of changing an 
image’s pixel intensity range to reveal 
particular aspects of the data which make 
the data more understandable. Using the 
Wolfram Mathmatica Software, we were 
able to create histogram data. Histogram 
data is used to demonstrate the distribution 
of pixel intensity values in a grayscale 
image. The x-axis represents bin size which 
is the intensity value range. The y-axis 
represents the total number of pixels or 
frequency. The grayscale histogram of an 
image can be determined by the following 
equation: 

𝐻(𝑖) = ∑ ∑ [𝐼(𝑥, 𝑦) ∈ 𝑖]!
"#$

%
&#$  (1) 

In this equation, M and N represent the 
width and height of the image. “[I (x, y) ∈ i] 
is a function that returns one (1) if the pixel 
at position (x,y) has an intensity value 
within a specified range for bin i, and zero 
(0) otherwise.” [2] Figure 10 is the 
histogram for an image that is unnormalized. 
Figure 11 is the histogram for that same 
image that has been normalized. 

 

Figure 10: Scan_07-18-
2022_0958_AZ270_EL35_L_D-R1 Un-
Normalized Histogram 454p4nm 

 

Figure 11: Scan_07-18 
2022_0958_AZ270_EL35_L_D-R1 
Normalized Histogram 454p4nm 

While the frequency levels are similar in both 
histograms, the bin sizes are substantially 
different. The bin sizes in the unnormalized 
histogram range in the thousands. The most 
notable difference between the histograms is 
that the normalized histogram is clearly 
bimodal whereas the unnormalize histogram 
is not. Since the thresholding methods used 
in this study assume two overlapping 
distributions are present, the normalized 
histograms are better suited for 
segmentation by thresholding. 

4 THRESHOLDING METHODS 
4.1 Otsu’s  Method 

Otsu’s Method is an image thresholding 
method named after Nobuyuki Otsu. Otsu's 
method automatically determines an optimal 
threshold value for segmenting an image 
into two classes, typically foreground and 
background. The key idea is to find a 
threshold that maximizes the separation 
between foreground and background pixels, 
resulting in an optimal threshold for image 
segmentation.         

The Otsu method algorithm works by 
calculating the optimal threshold value that 
maximizes the separability of the foreground 
and background regions. The algorithm 
assumes that the image contains two classes 
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of pixels: foreground and background and 
aims to find the threshold value that 
minimizes the within-class variance and 
maximizes the between-class variance. 

The within-class variance is defined as the 
sum of the variances of the foreground and 
background classes, weighted by their 
respective probabilities, while the between-
class variance is the squared difference 
between the mean intensities of the two 
classes, also weighted by their probabilities. 
The optimal threshold value is the one that 
maximizes the ratio of the between-class 
variance to the within-class variance. 

Once the optimal threshold value is 
determined, the image is thresholded by 
assigning all pixels with intensity values 
above the threshold to the foreground and all 
pixels with intensity values below the 
threshold to the background. The resulting 
binary image can then be used for further 
analysis or processing.  

For this study, a code was written using 
Wolfram Mathmatica Software (found in 
appendix) that allows a user to import a 
subset bip image and get the output of the 
resulting histogram and thresholded image. 
Figures 12,13, and 14 illustrate an imported 
subset image, the output image thresholded 
using Otsu’s method normalized, and the 
output image thresholded using Otsu’s 

method unnormalized. The normalized 
method produced a more accurate 
representation of the original image. 
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Figure 12 Original Scan_07-18-2022_0946_AZ075_EL20_L_D-R1 

Figure 13 Scan_07-18-2022_0946_AZ075_EL20_L_D-R1 Otsu segmented image normalized. 

Figure 14 Scan_07-18-2022_0946_AZ075_EL20_L_D-R1 Otsu segmented image Unnormalized 
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4.2 Kapur’s entropy thresholding 

Kapur's entropy-based method is an image 
thresholding technique that determines an 
optimal threshold value by maximizing the 
information content or entropy of the 
resulting binary image.  

Kapur's entropy method is a thresholding 
technique used for image segmentation. The 
method aims to find the threshold value that 
minimizes the total entropy of the 
segmented image. In this method, the image 
is first divided into two classes based on a 
threshold value, and then the entropy of each 
class is calculated. The threshold value that 
minimizes the total entropy of the 
segmented image is selected as the optimal 
threshold. 

The entropy of an image is a measure of the 
amount of information contained in the 
image. It is calculated using the probability 
distribution of the pixel intensities in the 
image. The pixels with intensities below the 
threshold value are assigned to one class, 
and the pixels with intensities above the 
threshold value are assigned to the other 
class. The formula for Kapur's entropy 
thresholding method is as follows: 

𝑇	 = 	𝑎𝑟𝑔𝑚𝑎𝑥(𝑇)	𝐻(𝐶1, 𝑇) 	+ 	𝐻(𝐶2, 𝑇)  
(2) 

where T is the threshold value, argmax(T) 
denotes the threshold value that maximizes 
the sum of entropies ‘H(C1,T)’ and 
‘H(C2,T)’, and ‘C1’ and ‘C2’ are the two 
classes defined by the threshold ‘T’. The 
entropy of a class C is calculated as: 

𝐻(𝐶) = 	−	𝑠𝑢𝑚;𝑝(𝑖) log;𝑝(𝑖)@@ 

(3) 

where ‘p(i)’ is the probability of pixel 
intensity ‘i’ belonging to the class ‘C’. 

In practice, Kapur's method involves 
computing the histograms of the image and 
iteratively calculating the entropies and the 
threshold value until convergence. Once the 
optimal threshold value is determined, the 
image is segmented into two classes based 
on the threshold, with all pixels below the 
threshold classified as background and all 
pixels above the threshold classified as 
foreground. 

Figures 16 and 17 show the entropy 
thresholding normalized and unnormalized 
image pertaining to figure 15. The 
normalized entropy image produced a 
clearer representation of the data cube 
image.  
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Figure 15 Scan_07-18-2022_0946_AZ075_EL20_L_D-R1 

Figure 16 Scan_07-18-2022_0946_AZ075_EL20_L_D-R1 entropy segmented image normalized

Figure 17 Scan_07-18-2022_0946_AZ075_EL20_L_D-R1 entropy segmented image unnormalized
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4.3 Kittler-Illingworth minimum 
error thresholding 

Kittler-Illingworth minimum error 
thresholding is an image thresholding 
technique that aims to find an optimal 
threshold value by minimizing the 
classification error between foreground and 
background pixels. The method involves 
calculating the probabilities of foreground 
and background pixels for each possible 
threshold value, and then computing the 
error associated with each threshold by 
considering misclassifications. The error is 
minimized by selecting the threshold that 
results in the lowest overall classification 
error. Kittler-Illingworth thresholding takes 
into account both the intensity distribution 
and the local variances of the foreground 
and background pixels, and it is particularly 
effective in handling images with uneven 
lighting conditions or complex intensity 

distributions. In summary, Kittler-
Illingworth minimum error thresholding 
minimizes classification error by 
considering probabilities, intensity 
distribution, and local variances, and selects 
the threshold that results in the lowest 
overall error for image segmentation. 

As seen in figures 19 and 20, Kittler-
Illingworth minimum error produces a 
normalized segmentation that 
underestimates clear sky regions in places, 
but correctly identifies the dark cloud as a 
cloud region. The unnormalized 
segmentation misrepresents the dark cloud 
as clear sky. The normalized image shows 
signs of overcorrection as some of the clear 
sky is merged with portions of the sky as 
seen in figure 19.  
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Figure 18 Original Scan_07-18   2022_0946_AZ075_EL20_L_D-R1 

Figure 19 Scan_07-18   2022_0946_AZ075_EL20_L_D-R1 minimum error segmented image 
normalized 

Figure 20 Scan_07-18-2022_0946_AZ075_EL20_L_D-R1 minimum error segmented image 
unnormalized 
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4.4 Normalized Mutual 
Information and the Adjusted 
Rand Index 

Similarities between the clusters produced 
by the three methods were compared using 
Normalized Mutual Information (NMI) and 
the Adjusted Rand Index (ARI). NMI 
measures the mutual information between 
two clustering’s while taking into account 
the sizes of the clusters. Mutual information 
is a measure of the amount of information 
shared between two variables. In the context 
of clustering, NMI measures the mutual 
information between two different cluster 
assignments of the same set of data points. 
The NMI value ranges from 0 (no mutual 
information) to 1 (perfect agreement). 

ARI, on the other hand, measures the 
agreement between two clustering’s while 
adjusting for chance agreement. The ARI 
value ranges from -1 (no agreement) to 1 
(perfect agreement), with 0 indicating the 
amount of agreement that would be expected 
by chance. ARI considers all pairs of data 
points and counts how many pairs are 
assigned to the same cluster in both 
clustering’s, or to different clusters in both 
clustering’s. 

Both measures are widely used in clustering 
and segmentation evaluation. However, 
NMI is more suitable for datasets with 
clusters of different sizes, while ARI is more 
suitable for datasets with similar cluster 
sizes. The choice between NMI and ARI 
depends on the specific application and the 

desired level of sensitivity to cluster size and 
chance agreement.  

The graphs in figure 21  display the average  
NMI results of the compared three 
thresholding methods used in this study. 
Overall, Kapur Entropy Thresholding and 
Otsu method at normalization in both ARI 
and NMI have an average value that is 
closer to 1. This means that Entropy and 
Otsu have better perfect agreement. These 
results confirm the image results that were 
obtained by the Mathematica Software. Otsu 
and Entropy images were more similar 
compared to the minimum error images.  
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Figure 21: Normalized Mutual Information 
Table of 5 captured images 
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5 CONCLUSION 

5.1 Results and Future Work 

The distribution of normalize radiance 
among image pixels is clearly bimodal, 
while the distribution of unnormalized 
radiance is not.  Because thresholding 
methods assume the presence of two 
overlapping distributions, normalization 
results in more accurate and more consistent 
segmentations.  Segmentations based on 
normalized radiance utilize primarily 
chromatic information.  Compared to 
segmentations based on spectrally averaged 
radiance, segmentations performed using 
normalized radiance were more accurate. 

Hyperspectral imaging continues to improve 
and excel in potential capabilities. In the 
future, this process could be used to find the 
amount of radiation reflected from clouds 
compared to that which is scattered by clear 
sky. Researchers may also be able to use 
these cameras to classify cloud types as well 
as monitoring radiative properties of clouds 
to determine cloud climate. 
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Appendix A: Scan_07-18-2022_0931_AZ075_EL20_L_D_R5 Data 

(Original Data Cube Image) 

(Normalized Histogram Data) 454.4 nm 

(Unnormalized Histogram Data) 586.3 nm 

(Unnormalized Histogram Data) 454.4nm 
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Appendix A: Scan_07-18-2022_0931_AZ075_EL20_L_D_R5 Data
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Appendix B: Scan_07-18-2022_0938_AZ315_EL30_L_D-R1 Data 

(Original Data Cube Image) 

(Normalized Histogram Data) 454.4 nm 

(Unnormalized Histogram Data) 454.4 nm 

(Unnormalized Histogram Data) 586.3 nm 
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Appendix B: Scan_07-18-2022_0938_AZ315_EL30_L_D-R1 Data 
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Appendix C: Scan_07-18-2022_0946_AZ075_EL20_L_D-R1 Data at 454.4 nm 

(Original Data Cube Image) 

(Normalized Histogram Data) 454.4 nm 

(Unnormalized Histogram Data) 454.4nm 

(Unnormalized Histogram Data) 586.3 nm 
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Appendix C: Scan_07-18-2022_0946_AZ075_EL20_L_D-R1 Data
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Appendix D: Scan_07-18-2022_0951_AZ225_EL20_L_D-R1 Data at 454.4 nm 

(Original Data Cube Image) 

(Normalized Histogram Data) 

(Unnormalized Histogram Data) 

(Unnormalized Histogram Data) 586.3 nm 
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Appendix D: Scan_07-18-2022_0951_AZ225_EL20_L_D-R1 Data at 454.4 nm 
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Appendix E: Scan_07-18-2022_0958_AZ270_EL35_L_D-R1 Data at 454.4 nm 

(Original Data Cube Image) 

(Normalized Histogram Data) 

(Unnormalized Histogram Data) 

(Unnormalized Histogram Data) 586.3 nm 
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Appendix E: Scan_07-18-2022_0958_AZ270_EL35_L_D-R1 Data at 454.4 nm 
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Appendix F: Mathmatica Software Code Used for Outputting Normalized 
Histogram Data and Segmented Images 
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Appendix F : Mathmatica Software Code Used for Outputting Normalized 
Histogram Data and Segmented Images 
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Appendix F : Mathmatica Software Code Used for Outputting Normalized 
Histogram Data and Segmented Images 
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Appendix F : Mathmatica Software Code Used for Outputting Normalized 
Histogram Data and Segmented Images 
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Appendix F : Mathmatica Software Code Used for Outputting Normalized 
Histogram Data and Segmented Images 
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Appendix F : Mathmatica Software Code Used for Outputting Normalized 
Histogram Data and Segmented Images 




