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Abstract 
Northern bobwhite (Colinus virginianus) populations have experienced precipitous 

declines throughout their range.  The North American Breeding Bird Survey for Alabama 

indicates a rate of decline of over six percent per year since 1966.  Declining bobwhite 

populations have been linked to large-scale habitat loss and a reduction in habitat quality 

due to advances in ecological succession, intensive monoculture agriculture, and 

intensive timber management practices.  Once a very diverse region, modern land-use 

practices throughout the Black Belt Prairie physiographic region have created a 

simplified landscape that have left few places where bobwhites can live and thrive.  

Despite extensive research on bobwhites, there is insufficient knowledge on the spatial 

distribution of bobwhite habitat on a regional scale, including the Black Belt Prairie 

physiographic region.  Knowing the spatial distribution of suitable bobwhite habitat will 

allow conservation planners to prioritize efforts and direct limited resources to achieve 

conservation goals for the region.  The goals of this study were to 1) evaluate the 

maximum entropy modeling approach for predicting northern bobwhite habitat in the 

Black Belt Prairie physiographic region, and 2) develop a northern bobwhite habitat 

suitability map for the Black Belt Prairie physiographic region.  The results showed that 

deciduous 1.8 km (1.8 km is the dispersal distance of bobwhites) neighborhood was the 

most important habitat variable, followed by water 1.8 km neighborhood.  Developed 1.8 

km neighborhood was the most important anthropogenic variable, ranking third in overall 

importance.  The resultant model denotes potential habitat in the region, and forms the 

basis for using the maximum entropy and geographic information system approach to 

predict suitable habitat and prioritize areas for conservation.   
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  Chapter 1: Introduction 
1.1 Background 

Northern bobwhite (Colinus virginianus) populations have experienced 

precipitous declines throughout their range (Sauer et al. 2000).  In the Southeastern 

United States, the North American Breeding Bird Survey (BBS) indicates that 

populations have been declining at over five percent per year since 1966 (Figure 1).  The 

BBS is conducted by the United States Geological Survey, Patuxent Environmental 

Science Center, and provides a consistent measure of bobwhite population trends range-

wide (L. Wes Burger. 2001).  Surveys for Alabama indicate a rate of decline of over six 

percent per year during the same time period (Sauer et al. 2017) (Figure 2).  However, 

bobwhite population declines were observed prior to the BBS (Stoddard 1931).  

Declining bobwhite populations have been attributed to a variety of factors including 

coyotes, fire ants, avian predators, and pesticides; however, the primary cause has been 

the cumulative effects of large-scale habitat loss and poor quality habitat associated with 

advanced ecological succession (Roseberry et al. 1979, Fies et al. 1992), intensive 

monoculture agriculture (Vance 1976, Exum et al. 1982, Roseberry 1993), and intensive 

timber management practices (Brennan 1991).  Guthery (1997) describes this as a range-

wide reduction in useable space.  Intensive, modern agricultural practices have created a 

landscape void of grassy/weedy plant communities essential for nesting and brood 

rearing, and woody fencerows for protective cover.  The reduction in habitat complexity 

has reduced the capability of the agriculture landscape to support bobwhites (Kabat and 

Thompson 1963).  In forested areas of the Southeast, lack of fire and fire exclusion 

(Brennan et al. 1998), increase in forest coverage and extent of densely planted pine 

plantations, and intensive silviculture practices have reduced grassy/weedy areas required 
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for reproduction and foraging (Fies et al. 1992).  Once a very diverse region that included 

tallgrass prairies, upland oak savannas, longleaf grasslands, cedar glades, and other 

suitable habitat types, modern land use practices throughout the Black Belt Prairie 

physiographic region have simplified the landscape and left few places where bobwhites 

can live and thrive.  Furthermore, areas with ample space support very few bobwhites due 

to the lack of proper management.   

 

Figure 1.  Northern bobwhite population trends in the Southeast, 1966-2015. 

 

Figure 2.  Northern bobwhite population trends in Alabama, 1966-2015. 
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To address these declines, the Southeast Quail Study Group (SEQSG) published 

the Northern Bobwhite Conservation Initiative (NBCI) in 2002; the NBCI was a range-

wide plan to restore bobwhite populations to the 1980 levels.  However, the NBCI was a 

paper-based plan that had limited utility as a conservation planning tool.  For example, 

wildlife biologists did not have access to a large database that would allow for quick 

analysis of potential habitat projects and customize conservation planning at a sub-county 

level.  Therefore, in 2008, the National Bobwhite Technical Committee (formally 

SEQSG) revised the NBCI (renamed the National Bobwhite Conservation Initiative) 

using a geographic information system (GIS).  The revision was accomplished through 

workshops where participating wildlife biologists developed spatially-explicit estimates 

of low, medium, and high priority landscapes for bobwhite recovery; this information is 

referred to as the biologist ranking information (BRI) (Figure 3).  The BRI is unique in 

conservation planning as it relied on expert knowledge of landscape attributes to map 

priority areas.  The GIS-based plan (NBCI ver. 2.0) has tremendous flexibility to aid in 

conservation planning at regional, state, and local spatial scales (The National Bobwhite 

Technical Committee 2011).   

 

Figure 3.  Range-wide biologist ranking information. 
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Although the NBCI 2.0 was an improvement from the original plan, it did not 

have the capability to predict the current distribution of the northern bobwhite.  In order 

to make accurate conservation decisions, conservationists need the best information on 

the bobwhite’s distribution status.  Habitat suitability models are used to identify suitable 

areas for bobwhites and other declining species, and can be developed from many types 

of data, including presence-only data (Anderson and Martinez-Meyer 2004; Phillips et al. 

2009; Cianfrani et al. 2010). 

Maximum entropy (Maxent) is based on machine learning that is designed to 

make predictions from presence-only data.  It is a common method for modeling the 

distribution of a species by finding the distribution that is closest to uniform (Phillips et 

al. 2006).  Maxent uses presence-only data and a set of environmental layers (habitat and 

anthropogenic) to predict the probability that habitat conditions are suitable for species 

occurrence.  Although presence-absence models have been reported to be more accurate 

in predicting species occurrence, it can be very challenging to collect absence data in the 

field (i.e. true absence data), particularly at large spatial scales (Cianfrani et al. 2010, 

Hastie and Fithian 2013).  For northern bobwhites, a small, inconspicuous species, it is 

impossible to collect true absence data at a large scale; therefore, Maxent with presence 

only data is more feasible to assess habitat suitability in the Black Belt Prairie 

physiographic region.              

The Black Belt Prairie physiographic region of Alabama, particularly the non-

forested portion, has received little attention for bobwhites, although they occur 

throughout the region.  This relative lack of attention might be attributed to the size of the 

Black Belt compared to other landscapes and loss of habitat to other land uses.  However, 
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interest in the region from conservationists has increased in recent years; albeit, with no 

tool to strategically guide bobwhite conservation planning.  This study will support the 

growing interest by identifying the spatial distribution of potential suitable habitat for 

bobwhites.  Furthermore, study results will assist conservation planners with federal and 

state agencies, and non-government organizations to identify areas to prioritize and direct 

limited resources, and accomplish bobwhite conservation goals for the region.   

1.2 Objectives 
Despite the extensive history of northern bobwhite research and management, 

there is limited knowledge regarding the spatial distribution of suitable habitat at a 

landscape scale.  The National Bobwhite Conservation Initiative Biologist Ranking 

Information (NBCI BRI) represents the subjective judgement of wildlife experts and 

provides the fundamental framework for bobwhite conservation at a landscape scale; 

however, the NBCI BRI does not precisely identify the location and spatial distribution of 

suitable habitat.   

One of the objectives of this study is to determine the spatial distribution of 

suitable habitat at a landscape scale (Black Belt Prairie physiographic region).  

Consequently, conservation planners can use this new knowledge to precisely distribute 

technical expertise, financial assistance, and other resources in a manner that optimizes 

the return on habitat conservation investment.  Conservation investments should be 

placed in the landscape that have the greatest potential for eliciting a sustained bobwhite 

population response; therefore, an objective, experimental-based approach to identify 

suitable bobwhite habitat is needed for spatially explicit allocation of expertise and 

resources.   
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The ultimate purpose of this study is to contribute to an enhanced knowledge of 

suitable bobwhite habitat distribution and a more precise delivery of conservation efforts 

that equate to an increase in northern bobwhite populations in the Black Belt Prairie 

physiographic region of Alabama.  The specific objectives of this study are to 1) evaluate 

the maximum entropy modeling approach for predicting northern bobwhite habitat in the 

Black Belt Prairie physiographic region of Alabama, and 2) develop a northern bobwhite 

habitat suitability map for the Black Belt Prairie physiographic region.    

1.3 Study Outline 
 The outline for this study followed a path from planning to interpretation.  A 

review of the scientific literature assisted in determining the appropriate habitat and 

anthropogenic environmental layers used in Maxent.  The Alabama Wildlife Federation’s 

landowner database was used to identify locations where northern bobwhite populations 

are known to occur.  Presence data were derived from these locations and were used as 

samples in the Maxent model.  Multiple spatial datasets were gathered from appropriate 

sources that were required for use in Maxent and ArcGIS.  All datasets were processed to 

prepare them for use in Maxent.  A preliminary and final run of the Maxent model 

produced an output map that was reclassified to produce the likelihood distribution map.  

The outline of the study is shown in Figure 4.                    
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Figure 4.  Outline of Study Methodology. 
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1.4 Literature Review 
 The spatial distribution of habitats influences the distribution of wildlife 

populations (Fuller 2012).  Therefore, knowing the spatial distribution of suitable 

northern bobwhite habitats would allow more focused efforts by conservation planners 

and quail managers (Schairer et al. 1999).  Habitat suitability is the likelihood that a 

species utilizes a particular habitat (Kearney 2006, Wang et al. 2008).  Researchers have 

been using models for decades to determine habitat suitability for bobwhites.  Habitat 

suitability models relate landscape variables to species occurrence (Hirzel and Le Lay 

2008) by using presence-only data or presence-absence data (Brotons et al. 2004, Pearce 

and Boyce 2006).  Presence-absence models are more accurate in predicting occurrences; 

however, collecting true absence data is extremely challenging at a large spatial scale 

(Cianfrani et al. 2010, Hastie and Fithian 2013).  For northern bobwhites, a small, 

inconspicuous species, true absence data is practically impossible to verify given the 

potential for bobwhites to be present in an area but not observed; this, of course, results in 

a biased bobwhite-habitat relationship.  Therefore, habitat suitability models with 

presence-only data are more feasible for large-scale habitat suitability assessments 

(Brotons et al. 2004, Zimmermann et al. 2010). 

Maximum entropy is a relatively new machine learning method that uses 

presence-only data, thus eliminating the need for true absence data.  It has been used 

successfully to model species distributions (Merow et al. 2013) with a limited number of 

presence-only data (Phillips et al. 2005; Elith et al. 2011; Merow et al 2013).  Maximum 

entropy has been widely used to create wildlife habitat suitability maps with remarkable 

predictive accuracy (Phillips et al. 2006, Kampichler et al. 2010).  Consequently, the 

recently developed Maxent modeling program has proven to be a very useful tool for 
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determining species distributions and wildlife-habitat relationships.  Although Maxent 

has become a standard for habitat suitability mapping (Elith et al. 2011), its use to predict 

habitat suitability for bobwhites as a single species is extremely limited.  The northern 

bobwhite has been studied intensively throughout its range; nonetheless, there are still 

gaps, particularly in using maximum entropy to predict bobwhite habitat suitability at a 

landscape scale.  Furthermore, no studies have been conducted that used maximum 

entropy (Maxent) and a Geographic Information System (GIS) to predict bobwhite 

habitat suitability in the Black Belt Prairie physiographic region of Alabama.               

Chapter 2: Methods 
2.1 Study Area 

The Black Belt Prairie physiographic region is a relatively narrow crescent that is 

approximately 500 kilometers long and 40 kilometers wide (Barone 2005), extending 

from southwest Tennessee south through east-central Mississippi and east through central 

Alabama near the Georgia border (Figure 5).  The region is named for the fertile, dark 

clay soils that were derived from the underlying chalk bedrock.  Instead of a continuous, 

open grassland as in the Great Plains, the historic landscape of the region was 

heterogeneous, consisting of distinct prairies interspersed through a matrix of different 

types of upland and bottomland forests (Barone 2005).  Forest types include loblolly pine 

(Pinus taeda) plantations, longleaf pine (Pinus palustris), upland hardwoods (Carya spp. 

and Quercus spp.), mixed pine-hardwoods (Pinus-Quercus), and bottomland hardwoods 

(Quercus spp.).  The diverse and floristic uniqueness of the Black Belt Prairie 

physiographic region provided important habitats for numerous species of wildlife, 

including the northern bobwhite.   
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Surveys conducted by the General Land Office in the 1830’s reported that prairies 

covered at least 144,000 hectares of the Black Belt region (Barone 2005), with 

approximately 73,060 hectares in Alabama (Schotz and Barbour 2009).  Since that time, 

more than 99% of the prairies have been converted to agriculture or lost to development 

(Noss et al. 1995).  Due to the region’s fertile soil, most of the prairies were converted to 

agriculture, including row crops and exotic grasses for grazing and haying.  The 

remaining prairies are threatened by erosion, conversion to other land uses, and the 

encroachment of woody vegetation (e.g. Juniperus virginiana L.) due to fire suppression.  

The fifteen Alabama counties identified by Schotz and Barbour (2009) were used as the 

study area (Figure 6).       

 

Figure 5.  Alabama and Mississippi with the Black Belt region in gray. 
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Figure 6. The study area includes Alabama counties with Black Belt prairies.   
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2.2 Maxent 
 Maxent (version 3.4.1) (Figure 7) was used to develop the maximum entropy 

model to predict potential habitat for northern bobwhites in the Black Belt Prairie 

physiographic region of Alabama.  Maxent is a model that is based on machine learning 

that makes predictions about presence-environment relationships from incomplete data 

(Baldwin 2009); it requires only presence data (i.e. samples) and a set of environmental 

layers (e.g. water, developed areas, etc.) for the study area.  Environmental layers can be 

both categorical and continuous data.  Because Maxent uses presence-only data, there is 

no need for actual absence data (Baldwin 2009).   

By default, Maxent uses a uniform distribution probability that assumes a species 

has an equal likelihood of being anywhere in the study area.  By using a uniform 

distribution probability, it predicts a distribution that is most spatially spread out (Merow 

et al. 2013).  Maxent was used in this study to estimate the most uniform distribution of 

bobwhite locations (sample points; presence-only data) compared to the background 

(environmental layers used as explanatory variables) where presence-absence was not 

measured.  That is, the model’s algorithm compares the bobwhite locations to all of the 

environments in the study area, and defines the environments by sampling a large number 

of points throughout the study area; the sampled points are called background points 

(locations).  The algorithm will eventually converge to the probability distribution of 

maximum entropy.  The default output, and the output used in this study, is logistic.  A 

logistic output provides a predicted probability of presence, or for this study, a predicted 

probability of suitable habitat, between 0 and 1 for each pixel in the study area. 
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Figure 7. User interface for Maxent (version 3.4.1). 

2.3 Presence Data 
 The Alabama Wildlife Federation’s landowner database was used to identify 

locations where habitat management for northern bobwhites is deliberate and bobwhite 

populations are considered stable or increasing (Figure 8). The suitable habitat conditions 

made these locations ideal for collecting presence data.  Twenty-six polygons that 

represent bobwhite locations were digitized in Google Earth and saved as a KML file.  To 

be used in ArcGIS, the KML files were converted to layers using the conversion tool in 

ArcGIS.   

 All twenty-six layers were merged into one polygon shapefile using the merge 

tool in the data management toolbox.  For use in Maxent, the polygon was converted to a 
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30 x 30 meter raster grid.  The raster grid was converted into 22,977 points using the 

raster to point tool in ArcGIS; the tool converts raster grids to points by using the center 

of each raster grid cell.  Table 1 includes the number of points/samples for each location.  

The x and y coordinates were added to the raster to point shapefile by using the add xy 

tool in the data management toolbox.  The x and y coordinates were copied into an Excel 

spreadsheet and saved as a comma-separated value (CSV) file (Figure 9) to be used in 

Maxent; a CSV file is the required format for the samples used in Maxent. 

 

 

Figure 8. Locations where stable or increasing northern bobwhite populations are known to occur.  
Presence data were obtained from these locations. 
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Table 1. Number of samples at each location. 

 

 

Figure 9. An Excel spreadsheet with presence data that was saved as a CSV file. 

# Locations County Samples 

1 Autauga 5,687 

2 Bullock 14,830 

3 Dallas 462 

4 Dallas 1,388 

5 Dallas 82 

6 Greene 108 

7 Greene 420 

 TOTAL 22,977 



17 
 

2.4 Environmental Layers 
 Land cover data were obtained from the 2016 National Land Cover Database 

(NLCD) that is managed by the Multi-Resolution Land Characteristics (MRLC) 

Consortium (https://www.mrlc.gov).  The MRLC is a group of federal agencies who 

work cooperatively to generate land cover data and information at the national scale for a 

wide variety of applications.  The MRLC provides data on land cover at a 30-meter 

resolution with 16 land cover classes.  All MRLC NLCD data products can be 

downloaded at no charge (Homer et al. 2015). 

 The 2016 NLCD 16-class land cover classification scheme was reclassified using 

the spatial analyst tool in ArcGIS to create a 10-class land cover classification scheme.  

“Pasture/hay” and “cultivated crops” were combined to create the “agriculture” land 

cover.  “Developed, open space,” “developed, low intensity,” “developed, medium 

intensity,” and “developed, high intensity” land cover classes were combined to create 

the “developed” land cover.  Lastly, “woody wetlands” and “emergent herbaceous 

wetlands” were combined to create the “wetland” land cover class (Figure 10).  The focal 

statistics tool in ArcGIS was used to generate Boolean layers for each land cover class.  

The focal statistics tool is ideal for this operation because it provides options for 

determining the neighborhood type (circle, rectangle, etc.) and statistic to be calculated 

(e.g. mean, average, sum, etc.).   For each layer, cells of that particular land cover class 

equal one and all other cells equal zero.  Generating Boolean layers from a single, multi-

class layer allowed a neighborhood operation to be performed on each land cover class.           

 Neighborhood data were generated using the focal statistics tool in ArcGIS.  Two 

circle neighborhoods were generated for each land cover class by specifying a radius of 

https://www.mrlc.gov/
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400 meters and 1800 meters.  A circle neighborhood of 400 meters (50 hectares) was 

used to represent the bobwhite’s median home range size (Smith and Burger 2003).  A 

circle neighborhood of 1800 meters (1.8 kilometers) was used to represent the bobwhite’s 

dispersal distance (Dimmick 1992).  The list of environmental layers is shown in Table 2. 

 

Figure 10. 2016 National Land Cover Database. 
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Table 2. List of environmental layers/variables used in Maxent. 

 

Digital elevation models (DEM) of the study area were obtained from the 

Geospatial Data Gateway (GDG) (https://www.datagateway.nrcs.usda.gov).  The GDG 

provides access to a repository of hundreds of high resolution environmental and natural 

resources vector and raster layers.  The service is made possible through a partnership 

between the Natural Resources Conservation Service, Farm Service Agency, and Rural 

Development.  Twelve 30-meter DEMs in raster format were required to cover the study 

area.  All DEMs were combined into one by using the mosaic to new raster tool in 

ArcGIS (Figure 11).        

Layer / Variable Description Year 
NLCD National land cover (10 classes) 2016 
Elevation Digital elevation model 2020 
Agriculture 1.8km Total agriculture area within 1.8km 2016 
Agriculture 400m Total agriculture area within 400m 2016 
Barren 1.8km Total barren area within 1.8km 2016 
Barren 400m Total barren area within 400m 2016 
Deciduous 1.8km Total deciduous forest area within 1.8km 2016 
Deciduous 400m Total deciduous forest area within 400m 2016 
Developed 1.8km Total developed area within 1.8km 2016 
Developed 400m Total developed area within 400m 2016 
Evergreen 1.8km Total evergreen forest area within 1.8km 2016 
Evergreen 400m Total evergreen forest area within 400m 2016 
Grassland/Herbaceous 1.8km Total grassland/herbaceous area within 1.8km 2016 
Grassland/Herbaceous 400m Total grassland/herbaceous area within 400m 2016 
Mixed 1.8km Total mixed forest area within 1.8km 2016 
Mixed 400m Total mixed forest area within 400m 2016 
Shrub/Scrub 1.8km Total shrub/scrub area within 1.8km 2016 
Shrub/Scrub 400m Total shrub/scrub area within 400m 2016 
Water 1.8km Total water area within 1.8km 2016 
Water 400m Total water area within 400m 2016 
Wetland 1.8km Total wetland area within 1.8km 2016 
Wetland 400m Total wetland area within 400m 2016 

https://www.datagateway.nrcs.usda.gov/
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Figure 11. Digital Elevation Model.  

2.5 Data Preparation 
 Maxent is designed to integrate with ArcGIS; however, all data must be in proper 

formats for smooth integration and to run the model.  The extract by mask tool in ArcGIS 

was used to set the processing extent, cell size, and projection system for all 

environmental layers.  The processing extent was set at 11182 columns x 7495 rows.  

Cell size was set at 30m x 30m and the projection system was set to WGS 

1984_UTM_Zone_16N.  The next step in preparing the data required converting all 

environmental raster layers to ASCII (.asc) format; this is a requirement of Maxent in 

order to run the model.  The raster to ASCII tool in ArcGIS was used to convert the 

environmental layers to ASCII files.        
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2.6 Maxent Settings 
 To begin, Maxent was opened to the main graphical user interface (GUI) where 

the samples file and environmental layers were uploaded.  The samples file contains the 

presence data in CSV format, and the environmental layers are the elevation and NLCD 

2016 layers in ASCII format.  The environmental layers must be set as “categorical” or 

“continuous.”  Categorical variables are discrete values such as vegetation type and soil 

type, while continuous variables are measured values such as temperature, precipitation, 

etc.  The elevation and neighborhood ASCII layers were set as continuous while the 

NLCD 2016 ASCII layer was set as categorical.  All settings on the GUI were selected 

except “Threshold features” as no tolerance or limit exists.  “Logistic” was selected as the 

output format to show a probability that suitable bobwhite habitat will occur within a 

particular grid cell.  The completed main GUI is shown in figure 12.  

 

Figure 12. The completed main Maxent graphical user interface. 
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 The Maxent settings tab on the main GUI contains three different tabs: 1) Basic, 

2) Advanced, and 3) Experimental, where model parameters are set before running 

Maxent.  Although there are dozens of parameter options among the three tabs, only the 

parameters selected for this model will be mentioned.  The parameters selected for this 

model are summarized in Table 3.   

Table 3. Parameters used to run the Maxent model. 

Parameter Tab Summary 
Replicates Basic Number of times to run the model 

Random test percentage Basic Percent of presence points set aside as test 
points to evaluate model performance 

Replicate run type Basic Testing and training method used when 
running multiple replicates 

Maximum iterations Advanced The maximum number of iterations to run 
Regularization multiplier Basic Reduces model overfitting 

Max number of background points Basic The number of cells randomly selected for 
background points 

 

Replicates are the number of times to run a model.  Running a model multiple 

times allows Maxent to average the results from all of the models that were created.  Five 

(5) replicates were chosen for the initial model.  To evaluate model performance, an 80-

20 split was used for training and testing.  That is, 80 percent of the presence data (21,445 

points) was used to create the model while 20 percent (1,531 points) was withheld and 

used to assess the accuracy of the model.  Using a certain percentage of presence data to 

evaluate a model’s performance is important.  Without these test data, Maxent will use 

training data (data used to create the model) to evaluate the model, which is a bias 

method for evaluating model performance.   

Maxent offers three different replicate run types (sampling techniques) that can be 

used as testing methods when running multiple replicates: crossvalidate, bootstrap, and 
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subsample.  Crossvalidate was selected for this model.  Crossvalidate randomly divides 

the sample data into different equal-size groups or “folds.”  Each fold is used separately, 

and omitted in turn, to test the performance of the training data during each iteration 

(Friedlaender et al. 2011).  The omitted folds are used to evaluate the model.  This 

crossvalidate technique in Maxent is referred to as “K-folds.”  The number of iterations 

was set to five (5) to allow Maxent to converge to maximum entropy and determine 

which environmental layers/variables contribute most to bobwhite habitat.  Maxent has a 

regularization protocol that reduces model overfitting (i.e. predicted distributions that are 

clustered near presence locations).  The regularization multiplier can be adjusted, 

however, the default setting of one (1) was used for this model as studies have shown that 

default settings perform as well as adjusted settings (Phillips and Dudik 2008).     

Lastly, a bias file (raster grid) was uploaded to determine where Maxent selects 

the background points (locations).  The background points represent the same selection 

bias as the presence data; this strives to achieve the same environmental bias in both 

presence and background data sets (Phillips et al. 2009).  For this study, 22,977 

background points (same number as presence points) were selected from the same 

counties where presence points (locations) were sampled (Ferrier et al. 2002).  A Maxent 

model that is based on presence and background data with the same bias will not focus on 

the bias, rather it will focus on the habitats occupied by a species (Dudik et al. 2005).      
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2.7 Running Maxent       
 An initial model (five-run replicates) using an 80-20 split was conducted to 

identify the importance of each environmental layer to the prediction of bobwhite habitat 

and reduce the number of layers to the most relevant.  Irrelevant layers were removed 

based on the following criteria: 1) the layers decreased training or testing gain, 2) the 

layers contributed less than one percent to the model, or 3) the layers’ response curves 

were static when all other layers were held at their mean (Ha et al. 2016 and Heumann et 

al. 2013).  Because replicates were set at five, Maxent ran the initial model five times and 

then averaged the results from all of the models that were generated.  Outputs from 

Maxent for the initial run were a likelihood distribution map, and a variable contribution 

and permutation table.   

A jackknife test was applied to all environmental layers to estimate the 

contribution of the layers to the model, and determine the training and testing gain for 

each layer.  The test iteratively omits each layer and considers each layer in isolation 

which allows a comparison of the relative importance of each layer to the habitat 

distribution.  Outputs from the jackknife test include a chart that illustrates the 

importance of each environmental layer.    

 The final list of environmental layers was reduced from 22 to 13 (Table 4) using 

the criteria listed above.  This list was used to conduct the 100-run replicates and produce 

the final model.  The parameters that were used in the initial model were used in the final 

model except for iterations which were set at 100.  After the 100-run replicates were 

completed, all of the outputs created by Maxent were saved in the output folder.   
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Table 4. Relative contributions of the environmental layers to the Maxent model 
averaged over 5-run replicates.  The variables in bold were used in the final model. 

VARIABLE PERCENT 
CONTRIBUTION 

PERMUTATION 
IMPORTANCE 

Deciduous 1.8km 33.5 43.5 

Water 1.8km 22.1 18.5 

Developed 1.8km 10.8 1.7 

Elevation 6.3 6.2 

Mixed 1.8km 5.2 3.9 

Wetland 400m 3.4 0.8 

NLCD 2016 3 0.1 

Wetland 1.8km 2.9 4.6 

Barren 1.8km 2.9 4.8 

Shrub/scrub 1.8km 2.4 2.9 

Grassland/herbaceous 1.8km 2 1.3 

Evergreen 1.8km  1.4 5.6 

Agriculture 1.8km 1.2 4.3 

Shrub/scrub 400m 0.7 0.4 

Deciduous 400m 0.7 0.8 

Mixed 400m 0.3 0.2 

Agriculture 400m 0.3 0.3 

Evergreen 400m 0.3 0.3 

Barren 400m 0.2 0 

Grassland/herbaceous 400m 0.1 0.1 

Water 400m 0.1 0 

Developed 400m 0 0 

 

Chapter 3: Results 
3.1 Model Evaluation            
 Maxent contains statistical tools to assist in the evaluation of model performance.  

The most accepted statistical tool for evaluating model performance for Maxent is the 

area under the curve (AUC) which is determined by the receiver operating curve (ROC).  

AUC-ROC is a statistic that was adapted to presence-only modeling methodology 
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(Fielding and Bell 1997).  AUC is usually used to determine how a model compares and 

distinguishes between presence locations and absence locations, but with presence-only 

data AUC compares presence locations with background locations (Merow et al. 2013).  

The AUC value ranges from 0 to 1.  An AUC value of 0 is under-fitted while an AUC 

value of 1 is perfectly-fitted.  Model fitting is a measure of how well Maxent makes 

predictions based on the data on which it was trained (i.e. fit the data).  A well-fitted 

model produces more accurate outputs, while an under-fitted model produces less 

accurate outputs.  Model fitting is fundamental to a machine learning model such as 

Maxent.  If a model doesn’t fit the data correctly, the outputs will not be accurate enough 

for making decisions.  The average AUC for the final, 100-replicates model is 0.744 with 

a standard deviation of 0.011 (Figure 16).  The black line in Figure 16 represents a 

random prediction.  That is, the line indicates what would be expected if the model was 

no better than random (AUC = 0.5).  The red line indicates the fit of the model compared 

to the training data (AUC = 0.744).  With an AUC of 0.744, the Maxent model predicts 

the distribution of habitat for northern bobwhites relatively well.  Swets (1988), Graham 

and Hijmans (2006) and, Pearce and Ferrier (2000) suggests that AUC values between 

0.7 and 0.9 are appropriate for many uses.     
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Figure 13. The average AUC for the 100-replicates model. 

 

 Another statistical evaluation includes the test omission rate and predicted area as 

a function of the cumulative threshold that was averaged over the replicate runs.  

Maxent’s diagnostics generate a prediction threshold, predicted values above the 

threshold are considered to be suitable habitat, while predicted values below the threshold 

are considered to be unsuitable habitat.  Figure 14 shows the predicted area and replicated 

rates of omission of test samples compared to Maxent’s randomly generated prediction 

omission.  The omission rate of test samples should be very close to the predicted 

omission (Lozar et al. 2018).  For this model, the line that represents the omission test 

data is relatively close to the predicted omission line, indicating that the model performed 

fairly well.   
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Figure 14. The omission rate and predicted area as a function of the cumulative threshold.  

3.2 Variable Contribution  
 Maxent provides two methods to determine the contribution of the environmental 

variables to the model: 1) an analysis of variable contributions and 2) a jackknife of 

regularized training gain (Phillips 2017). While the model is being trained, Maxent keeps 

track of which environmental variables are contributing most to the model.  At the end of 

the training, Maxent converts the contribution values to percentages and produces an 

analysis of variable contribution table (Table 7) (Phillips 2017).  Variable importance is 

measured by percent contribution and permutation importance.  Percent contribution is 

determined based on the path variables follow in reaching convergence (Phillips 2017).  

Simply, percent contribution displays the order in which variables were introduced to the 

model.  Permutation importance is determined by randomly permuting the values for 

presence and background samples for each variable while holding all other variables 
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constant (Jarnevich et al. 2016).  Variables with the highest predictive contribution 

percentage have the greatest impact on predicting suitable bobwhite habitat.  The three 

most important variables that contributed to the model include: 1) deciduous 1.8km, 2) 

water 1.8km, and 3) developed 1.8km.  Specifically, deciduous 1.8km, water 1.8km, and 

developed 1.8km contributed 32.6%, 22.8%, and 10.1%, respectively.  Noticeably, these 

results were very similar to the results of the preliminary model.  Although the analysis 

shows that Maxent used the deciduous 1.8km variable more than the others, it doesn’t 

suggest that deciduous 1.8km is more important to northern bobwhites than the other 

variables.  The contribution of the other variables to the model was relatively minor with 

predictive contribution percentages between 1.1% and 9.8%.  According to the 

permutation importance, deciduous 1.8km and water 1.8km were high predictors, ranking 

one and two, respectively.     

The jackknife of regularized training gain is useful for determining which 

variables contribute most to the model (Phillips 2017).  That is, it is important for 

determining which environmental variable has the most information for predicting 

suitable habitat for northern bobwhites.  Multiple models are created when Maxent is 

running.  Initially, each variable is excluded in succession so a model is created with the 

remaining variables.  Afterwards, a model is created using each variable separately.  

Lastly, a model is created using all of the variables.  The results of the jackknife analysis 

are provided as a bar chart (Figure 15).  The red bar at the bottom of the chart represents 

the model that used all of the variables.  The blue bars represent the regularized training 

gain when each variable was used separately.  The green bars represent the regularized 

training gain when variables were excluded.  The variable with the highest gain when 
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used separately (“with only variable”) is deciduous 1.8km.  This suggests that deciduous 

1.8km has the most useful information by itself.  The next two variables in order of 

importance are elevation and developed 1.8km.  Although the analysis of variable 

contributions and jackknife test agree that deciduous 1.8km is the most important 

variable, they disagree regarding the other variables.  The variable that decreases the gain 

the most when it is excluded (“without variable”) is deciduous 1.8km.  This suggests that 

deciduous 1.8km has the most information that is not present in the other variables.                          

Table 5. Analysis of variable contribution 
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Figure 15. Results of the jackknife analysis for northern bobwhite habitat suitability. 

3.3 Response Curves 
 Maxent produces two sets of response curves for the environmental variables.  

For each set of curves, Maxent will produce one graph for each environmental variable.  

Because 13 environmental variables were used for this model, Maxent produced 13 

graphs for each set of curves.  The first set of curves are referred to as marginal curves 

which illustrate how the model prediction changes as the value of each environmental 

variable changes as all other variables remain at their average values.  Marginal response 

curves, however, can be misleading if environmental variables are correlated (Phillips 

2017).  Therefore, Maxent produces a second set of response curves that are different 

than the marginal curves.  Although both set of response curves may look similar, unlike 

the marginal curves, the second set of curves were produced using different models.  

Each curve is a different model that was produced using only one environmental variable 

while excluding all of the other variables (Phillips 2017).  The second set of response 
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curves was used to determine predicted suitability of each environmental variable.  The 

Y-axis for each of the response curves is the predicted probability of presence expressed 

by the logistic output format.  The X-axis includes the number of cells occupied by the 

environmental variable.  The blue line represents the standard deviation.   

Figure 16 includes the second set of response curves that were created to 

represent Maxent’s prediction using only that environmental variable.  The contribution 

of the environmental variables varied greatly between models.  The environmental 

variables that contributed most to the final model include, deciduous 1.8km, water 1.8km, 

and developed 1.8km, respectively.  The three variables combined contributed 65.5% to 

the model.  Wetland 400m and agriculture 1.8km contributed least to the final model, 

respectively.  Deciduous 1.8km increased the likelihood of northern bobwhite habitat 

suitability within 4600 cells (Figure 17a).  Cell size is 30m x 30m (0.0009 km2), 

therefore, Maxent predicted suitable habitat within 4.14 km2 (0.0009 x 4600 = 4.14 km2) 

or 414 hectares (1023 acres).  After 414 hectares, deciduous 1.8km no longer increases 

the likelihood of bobwhite habitat.  The response curve for water 1.8km illustrates that 

the highest likelihood of suitable habitat is predicted to be at 1600 cells (1.44 km2) or 

144 hectares (355 acres), with a sharp decline beyond 1600 cells of water within the 1.8 

km neighborhood (Figure 17b).  According to the developed 1.8km variable, bobwhite 

habitat is most likely to occur in the lowest developed areas within the 1.8km 

neighborhood (Figure 17c).  As expected, habitat suitability remains low as developed 

1.8km increases.                  
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Figure 16.  Environmental variable response curves for the final northern bobwhite 
model. 
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Figure 17. Environmental variable response curves that contributed most to the model are 
a) deciduous 1.8km, b) water 1.8km, and c) developed 1.8km. 
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3.4 Likelihood Distribution   
 The initial output of Maxent is an html file that includes two png images of the 

predicted habitat.  The two images, a mean and standard deviation of the output grids, are 

rated on a continuous scale between 0.0 and 1.0. Values that are closer to 0 indicate less 

potential suitable habitat while values that are closer to 1 indicate higher potential 

suitability.  Although Maxent produces results in a png format, the images were 

converted to raster images using the conversion tool in ArcGIS for improved 

visualization and evaluation.  Finally, the symbology of the raster was changed to create a 

map of the likelihood of bobwhite habitat in the Black Belt Prairie physiographic region 

(Figure 18).  In addition to the numerical values, the dark blue color indicates a low 

probability of suitable habitat while red indicates a high probability of suitable habitat.       

 

Figure 18. The likelihood distribution of suitable habitat. 
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Maxent automatically calculates predicted areas and training omission rates for 

cumulative and logistic thresholds.  Each threshold was used to obtain a binary (suitable 

vs unsuitable) prediction for bobwhite habitat suitability.  Table 6 includes the predicted 

areas and testing omission rates using different threshold levels.  Table labels include: 

− Thresholds - (cumulative and logistic) used for the model criteria 

− Description - briefly describes the model criteria 

− Predicted area - the proportion of the total area predicted to be suitable habitat 

− Training omission rate - the rate of failure to predict suitable habitat where it is 
known to occur 

The training omission rates for all model criteria were relatively low except for 0.3287.  

The relatively low training omission rates indicate acceptable results (Lozar et al. 2018).    

Table 6. Predicted areas and testing omission rates using different threshold methods. 

Cumulative 
Threshold 

Logistic 
Threshold 

Description Predicted 
Area 

Training 
Omission 

Rate 
1 0.0604 Fixed cumulative value 1 0.71 0.0018 

5 0.2292 Fixed cumulative value 5 0.5397 0.016 

10 0.3942 Fixed cumulative value 10 0.4726 0.08 

0.7119 0.0483 Minimum training 
presence 

0.7409 0 

11.4047 0.4176 10 percentile training 
presence 

0.4601 0.1 

29.8104 0.5057 Equal training sensitivity 
and specificity 

0.3356 0.3356 

7.6946 0.3331 Maximum training 
sensitivity plus specificity 

0.4969 0.0484 

3.6407 0.17 Balance training omission, 
predicted area, and 
threshold value 

0.5741 0.0076 

2.6959 0.1281 Equate entropy of 
thresholded and original 
distributions 

0.6061 0.0062 
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It is often beneficial in conservation planning to develop binary models of habitat 

distributions (Abade et al. 2014).  A binary output can allow for a quick assessment of 

habitat suitability.  Consequently, the continuous results (i.e. likelihood distribution) were 

converted into a binary distribution by selecting the appropriate threshold.  For this study, 

a threshold is the minimum level at which habitat is predicted to be suitable.  Predicted 

values above the threshold are considered to be suitable habitat, whereas predicted values 

below the threshold are considered to be unsuitable habitat.  Thresholds are selected to 

provide a preferred balance between omission and commission errors (Hernandez et al. 

2006; Fielding and Bell 1997).  However, this is a rather arbitrary means of selecting a 

threshold.  Unfortunately, selecting an appropriate threshold is not clear when using 

presence-only data (Pearson et al. 2007).      

Threshold selection is a possible bias in modeling (Phillips and Dudik 2008; Bean 

et al. 2012; Syfert et al. 2013; Nenzen and Araugo 2011).  Liu et al. (2013) evaluated the 

suitability of 13 threshold selection methods using presence only data for simulated 

species.  The researchers found that the maximum training sensitivity plus specificity 

method was promising for presence only data.  However, the study results contrasted 

with Norris (2014) that maximum training sensitivity plus specificity resulted in the 

greatest omission error and increased loss of suitable areas among all the predicted 

distributions of lowland tapir.  Norris found that the minimum training presence and fixed 

cumulative value 1 methods had the lowest threshold values and near zero omission 

errors; therefore, these methods were selected as the most appropriate to identify suitable 

and unsuitable areas for lowland tapir.  According to Glover-Kapfer (2015), the 



38 
 

maximum test sensitivity plus specificity logistic threshold should be used rather than the 

commonly recommended maximum training sensitivity plus specificity logistic threshold. 

The area of suitable habitat was compared using all nine of the threshold selection 

methods produced by Maxent (Table 6).  Four of the methods considerably under 

predicted habitat suitability: maximum training sensitivity plus specificity, equal training 

sensitivity and specificity, 10 percentile training presence, and fixed cumulative value 10.  

Although arbitrary, the decision to consider these selection methods inappropriate was 

based on knowledge of the study area.  Three of the methods considerably under 

predicted habitat suitability along the perimeter of multiple counties in the study area: 

equate entropy of thresholded and original distributions, balance training omission, 

predicted area, and threshold value, and fixed cumulative value 5.  The decision to 

consider these selection methods inappropriate for use was based on knowledge of the 

study area.  Although arbitrary, these methods clearly missed predicting a considerable 

amount of suitable habitat.  Minimum training presence (MTP) and fixed cumulative 

value 1 (FCV1) were likely the most appropriate methods for selecting a threshold 

(Figure 19).  MTP and FCV1 had a logistic threshold of 0.0483 and 0.0604, respectively.  

The training omission rate for MTP and FCV1 was 0 and 0.0018, respectively.  For MTP, 

15 of the presence locations were below the logistic threshold of 0.0483, whereas 79 of 

the 22,977 presence locations were below the logistic threshold of 0.0604 for FCV1.  The 

binary models indicate that MTP comprised 53% of the study area while FCV1 

comprised 47% (Table 7).  Determining an appropriate threshold selection method for 

this study was more arbitrary than science.  It involved a subjective examination of model 
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predictions to determine if they make sense relative to northern bobwhite habitat ecology 

and knowledge of the study area.                   

   

Figure 19. Binary distributions produced by a) MTP and b) FCV1 threshold methods. 
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Table 7. Area and percentage of study area predicted as suitable habitat using the MTP 
and FCV1 threshold selection methods. 

Threshold 
Method Unsuitable Suitable % study area 

(suitable) 

MTP 

1,581,600  
ha 

1,399,800  
ha 53%              3,908,218 

ac 
3,458,981 

ac 

FCV1 

1,758,200 
ha 

1,223,100  
ha 

47% 4,344,606 
ac 

3,022,345 
ac 

Chapter 4: Discussion 
 

4.1 Implications for Variable Contribution 
Maxent determines which variables make the greatest contribution to the model 

by conducting an analysis of variable contributions and a jackknife analysis.  The 

analysis of variable contributions determined deciduous 1.8km, water 1.8km, and 

developed 1.8km, respectively, to be the variables that had the highest predictive 

contribution percentage, thus having the greatest impact on predicting suitable northern 

bobwhite habitat.  Although Maxent used the deciduous 1.8km variable more than the 

others, it doesn’t suggest that it is more important to bobwhites than the other variables; 

certainly, there are other variables that are far more important for bobwhite survival and 

reproductive success.  As expected, predicted suitable bobwhite habitat remained 

consistently low as developed 1.8km increased.  The contribution of other variables to the 

model was minor with relatively low contribution percentages.  Because the majority of 

presence locations were taken in evergreen land cover, it is a surprise that evergreen 

1.8km contributed only 1.6 percent to the model.  Furthermore, the northern bobwhite is 

adapted to early successional habitat that includes an abundance of herbaceous ground 

cover and shrubs; consequently, the contribution percentages of shrubscrub 1.8km, 
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evergreen 1.8km, and grasslandherbaceous 1.8km were expected to be significantly 

higher.   

According to the jackknife analysis, deciduous 1.8km is a strong predictor of 

suitable bobwhite habitat as it had the highest gain when used separately (“with only 

variable”).  This suggests that deciduous 1.8km has the most useful information by itself.  

Furthermore, deciduous 1.8km decreases the gain the most when it is excluded (“without 

variable”), which suggests that it has the most information that is not present in the other 

variables.  Although the analysis of variable contributions and jackknife test agree that 

deciduous 1.8km is the most important variable, they disagree regarding the other 

variables.  For example, elevation was the second most important variable in the 

jackknife analysis, while it contributed only 9.8 percent according to the variable 

contribution analysis. Although the results of this study indicate that Maxent can be used 

to predict suitable bobwhite habitat at a landscape scale, model performance could 

potentially be improved by reducing the number of variables to include only those 

variables that satisfy the strictest ecological niche of northern bobwhites. 

4.2 Implications for Response Curves  
                 The response curves agreed with the variable contribution analysis that 

deciduous 1.8km, water 1.8km, and developed 1.8km, respectively, contributed most to 

the model.  An initial view of the deciduous 1.8km response curve may seem 

questionable as it predicts an increase in likelihood of suitable bobwhite habitat within 

4,600 cells.  However, as expected, the likelihood of suitable bobwhite habitat declined 

beyond 4,600 cells.  For example, bobwhites consume and benefit from mast produced by 

deciduous trees; however, deciduous forests are not essential for bobwhite reproduction 
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and survival.  Consequently, bobwhites will avoid relatively large deciduous habitats, 

instead, they utilize relatively small patches of deciduous habitats that are interspersed 

into a matrix of evergreen forests, shrubs, and grassland habitats.  Similarly, an initial 

view of the water 1.8km response curve may seem questionable as it predicts an increase 

in likelihood of suitable bobwhite habitat between 250 and 1,600 cells; however, as 

expected, habitat suitability sharply declines beyond 1,600 cells.  For example, bobwhites 

in Alabama achieve their daily water requirements from their diet (insects, vegetation, 

and fruits); however, free-standing water is important during periods of extreme drought.  

Because of Alabama’s humid subtropical climate (Beck et al. 2018), water variables 

could potentially be excluded from the model – unlike west Texas where the climate is 

dry and free-standing water is critical for bobwhite survival.  As expected, the likelihood 

of suitable bobwhite habitat is relatively high when developed 1.8km is low, and a 

consistently low likelihood in suitability as developed 1.8km increases.  Similarly, the 

likelihood of suitable habitat is relatively high when barren 1.8km is low, and a 

consistently low likelihood in suitability as barren 1.8km increases.  Surprisingly, the 

evergreen 1.8km response curve shows a sharp decline in habitat suitability as evergreen 

1.8km increases.  This is a surprise because evergreen forests (upland forests) provide the 

best opportunity for bobwhite management.           

4.3 Implications for Likelihood Distribution 
 An initial inspection of the continuous likelihood distribution map indicates that 

known areas of stable or increasing bobwhite populations were accurately predicted to be 

high.  Although Maxent was not used in this study to predict occupancy, one would 

expect Maxent to predict a high likelihood distribution for areas that are known to have 

stable or increasing populations because bobwhite populations are closely associated with 
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habitat suitability.  However, upon close inspection of the map, some areas with a 

relatively high likelihood distribution are obviously poorly suited for bobwhites; this 

discrepancy was determined by using aerial imagery and site inspections.  For example, a 

relatively large area in east-central Russell County has a high likelihood distribution; 

however, the area is a flooded wetland.  Maxent may have under predicted the likelihood 

distribution along the outer edges of the study area.  If so, a possible explanation could be 

due to model overfitting.  That is, the predicted distributions are clustered near presence 

locations leaving the outer edges under predicted.  The default setting of one was used for 

the regularization multiplier; however, adjusting the setting could potentially reduce 

model overfitting.   

Minimum training presence (MTP) and fixed cumulative value 1 (FCV1) are 

likely the most appropriate methods for selecting a threshold to obtain a binary (suitable 

vs unsuitable) prediction for bobwhite habitat suitability.  For this study, a threshold is 

the minimum level at which habitat is predicted to be suitable.  It is often beneficial in 

conservation planning to develop binary models (Abade et al. 2014); however, 

determining an appropriate threshold method for this study was more arbitrary than 

science.  As with the continuous likelihood distribution, the MTP and FCV1 binary maps 

indicate potentially under predicted areas along the outer edges of the study area.  

Furthermore, with the MTP and FCV1 thresholds showing 53 percent and 47 percent, 

respectively, of the study area to be suitable for bobwhites, undue confidence may be 

placed in the predictions.  Choosing biologically meaningful thresholds may depend on 

prevalence or population density (Merow et al. 2013), which is unknown in this study.  
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Therefore, thresholds based on arbitrary selection may have little utility in predicting 

bobwhite habitat suitability on a landscape scale.     

4.4 Implications for Management          
 Understanding spatial distributions of habitats is critical to management and 

conservation planning of wildlife populations (De Knegt et al. 2011).  This research 

suggests that Maxent can be used to understand the spatial distribution of potential 

suitable habitat for northern bobwhites.  Using the predictive capability of Maxent, this 

research will allow conservation planners to focus their work in areas of the Black Belt 

Prairie physiographic region that have a high likelihood of supporting bobwhite 

populations.  By focusing on areas with a high likelihood of a bobwhite population 

response, managers can reduce the possibility of investing management efforts in lower-

quality areas.  Furthermore, the identification of high-quality areas based on the 

ecological requirements of northern bobwhites provide areas for potential reintroduction 

efforts, and public outreach and education.  The likelihood distribution model can be used 

to correlate high-quality areas with land ownership (public vs. private) for a more precise 

delivery of outreach and management efforts.  Lastly, this model can be used as a 

monitoring tool to determine changes in the spatial distribution of habitat over time 

caused by changes in land use patterns and habitat management.      

     Chapter 5: Conclusion   
  
 This research concluded that Maxent can be used to model suitable habitat for 

northern bobwhites by using presence-only data and environmental variables.  This 

model’s AUC, the most commonly used metric to determine model quality, indicates a 

“good” and useful model (Swets 1988).  Therefore, this model is useful for predicting 
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habitat suitability for northern bobwhites in the Black Belt Prairie physiographic region.  

There is widespread disparity regarding the use of default settings versus model tuning.  

Because of the disparity and lack of information on using Maxent to predict bobwhite 

habitat suitability, the default settings were largely used for this study.  Consequently, 

this approach produced a useful model for predicting suitable bobwhite habitat.  

However, model performance could potentially be improved by tuning certain 

parameters.   

Literature Cited 
 

Abade, L., D. W. Macdonald, and A. J. Dickman. 2014. Using landscape and bioclimatic features 
to predict the distribution of lions, leopards and spotted hyaenas in Tanzania’s Ruaha landscape. 
PLoS One 9:e96261. doi: 10.1371/journal.pone.0096261. 

Anderson, R. P., and E. Martinez-Meyer. 2004. Modeling species’ geographic distributions for 
preliminary conservation assessments: an implementation with the spiny pocket mice 
(Heteromys) of Ecuador. Biological Conservation. 116:167-179.  

Baldwin, R.A. 2009. Use of Maximum Entropy Modeling in Wildlife Research. Entropy 11:854-
866. 

Barone, J.A. 2005. Historical presence and distribution of prairies in the Black Belt of Mississippi 
and Alabama. Castanea 70:170-183.  
 
Bean, W. T., Stafford, R. and Brashares, J. S. 2012. The effects of small sample size and sample 
bias on threshold selection and accuracy assessment of species distribution models. Ecography 
35:250-258. 
 
Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, E. F. Wood. 2018.  
Present and future Koppen-Geiger climate classification maps at 1-km resolution. Scientific Data 
5:180214, doi:10.1038/sdata.2018.214.  
 
Brennan, L. A. 1991. How can we reverse the northern bobwhite decline? Wildlife Society 
Bulletin 19:544–555. 
 
Brennan, L.A., R. T. Engstrom, W. E. Palmer, S. M. Hermann, G. A. Hurst, L. W. Burger, and C. 
L. Hardy. 1998. Whither wildlife without fire? Transactions North American Wildlife and 
Natural Resources Conference 63:1–11. 
Brotons, L., W. Thuiller, M. Arauja, and A. H. Hirzel. 2004. Presence-absence versus presence 
only modeling methods for predicting bird habitat suitability. Ecography 27:437-448.  
Cianfrani, C., G. Le Lay, A. H. Hirzel, and A. Loy. 2010. Do habitat suitability models reliably 
predict the recovery areas of threatened species? Journal of Applied Ecology 47:421-430.  



46 
 

De Knegt, H. J., F. Van Langevelde, A. K. Skidmore, A. Delsink, R. Slotow, S. Henley, 
G. Bucini, W. F. De Boer, M. B. Coughenour, C. C. Grant, I. M. A. Heitkönig, M. Henley, N.M. 
Knox, E. M. Kohi, E. Mwakiwa, B. R. Page, M. Peel, Y. Pretorius, S. E. Van Wieren, and H. H. 
T. Prins. 2011. The spatial scaling of habitat selection by African elephants. Journal of Animal 
Ecology 80:270-281. 
 
Dimmick, R. W. 1992. Northern Bobwhite (Colinus virginianus): Section 4.1.3, US Army Corps 
of Engineers Wildlife Resources Management Manual, Technical Report EL-92-18, US Army 
Engineer Waterways Experiment Station, Vicksburg, Miss.  
 
Dudik, M., S. J. Phillips, and R. E. Schapire. 2005. Correcting sample selection bias in maximum 
entropy density estimation. Pages 323-330 in Advances in neural information processing systems 
18. MIT Press, Cambridge, Massachusetts, USA.  
 
Elith, J. 2002. Quantitative methods for modeling species habitat: Comparative performance and 
an application to Australian plants. In: S. Ferson and M. Burgman (eds.), Quantitative Methods 
for Conservation Biology. Springer, pp 39-58.  
 
Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. 
Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. 
Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. S. 
Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz, N. E. 
Zimmermann. 2006. Novel methods improve prediction of species’ distributions from occurrence 
data. Ecography 29:129-151. 
 
Elith, J., S. J. Phillips, T. Hastie, M. Dudik, Y. E. Chee, and C. J. Yates. 2011. A statistical 
explanation of MaxEnt for ecologists. Diversity and Distributions 17:43-57. 
 
Exum, J. H., R. W. Dimmick, and B. L. Deardon. 1982. Land use and bobwhite populations in an 
agricultural system in west Tennessee. Proceedings of the National Quail Symposium 2:6–12. 
 
Ferrier, S., G. Watson, J. Pearce, and M. Drielsma. 2002. Extended statistical approaches to 
modelling spatial pattern in biodiversity in northeast New South Wales. 1. Species-level 
modelling. Biodiversity and Conservation 11:2275-2307.  
 
Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in 
conservation presence/absence models. Environ. Conserv. 24, 38-49.  
 
Fuller, R. J. 2012. Birds and Habitat: Relationships in changing landscapes. University Press, 
Cambridge, UK.  
 
Fies, M. L., I. L. Kenyon, and J. V. Gwynn. 1992. Effects of changing land use patterns on 
bobwhite quail habitat in Virginia. Virginia Journal of Science 23:143–155. 
 
Friedlaender, A.R., Johnston, D.W., Fraser, W.R., Burns, J., Halpin, P.N., Costa, D.P. 2011. 
Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic 
Peninsula. Deep-Sea Res II 58:1729-1740. 
Glover-Kapfer, P. 2015. A training manual for habitat suitability and connectivity modeling using 
tigers (Panthera tigris) in Bhutan as example. 10.13140/RG.2.2.34804.86409.  
 



47 
 

Grahma, C. H. and R. J. Hijmans. 2006. A comparison of methods for mapping species ranges 
and species richness. Global Ecology and Biogeography 15:578-587. 
 
Guthery, F. S. 1997. A philosophy of habitat management for northern bobwhite. Journal of 
Wildlife Management 61: 291–301. 
 
Ha, H., Heumann, B. W., Liesch, M., Wang, X., 2016. Modelling potential conservation 
easement locations using physical and socio-economic factors: a case-study from south-east 
Michigan. Appl. Geogr. 75, 104-115.  
 
Hastie, T., and W. Fithian. 2013. Inference from presence-only data; the ongoing controversy. 
Ecography 36:864-867.  
 
Hernandez, P. A., Graham, C. H., Master, L. L., Albert, D. L. 2006. The effect of sample size and 
species characteristics on performance of different species distribution modeling methods. 
Ecography. 29:773-785.  
 
Heumann, B. W., Walsh, S. J., Verdery, A. M., McDaniel, P. M., Rindfuss, R. R. 2013. Land 
suitability modelling using a geographic socio-environmental niche-based approach: a case study 
from Northeastern Thailand. Ann. Assoc. Am. Geogr. 103, 764-784.  
 
Hirzel, A. H., and G. Le Lay. 2008. Habitat suitability modelling and niche theory. Journal of 
Applied Ecology 45:1372-1381.  
 
Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., 
Wickham, J.D., and Megown, K., 2015, Completion of the 2011 National Land Cover Database 
for the conterminous United States-Representing a decade of land cover change 
information. Photogrammetric Engineering and Remote Sensing, v. 81, no. 5, p. 345-354  
 
Jarnevich, C. S., T. R. Holcombe, B. A. Grisham, J. Timmer, C. W. Boal, M. Butler, J. Pitman, S. 
Kyle, D. Klute, G. Beauprez, A. Janus, and B. Van Pelt. 2016. Assessing range-wide habitat 
suitability for the Lesser Prairie-Chicken.  Avian Conservation and Ecology 11(1):2.  
 
Kabat, C., and D. R. Thompson. 1963. Wisconsin quail, 1834– 1962: population dynamics and 
habitat management. Wisconsin Conservation Department Technical Bulletin 30. Madison. 
 
Kampichler, C., R. Wieland, S. Calme, H. Weissenberger, and S. Arriaga-Weiss. 2010. 
Classification in conservation biology: a comparison of five machine-learning methods. 
Ecological Informatics 5:441-450. 
 
Kearney, M. 2006. Habitat, environment and niche: what are we modelling? Oikos 115:186-191. 
 
Liu, C., White, M. and Newell, G. 2013. Selecting thresholds for the prediction of species 
occurrence with presence-only data. Journal of Biogeography 40:778-789.  
Lozar, Robert C., Scott A. Tweddale, Charles R. Ehlschlaeger, Carey L. Baxter, and Jeffrey A. 
Burkhalter. 2018. Testing Maximum Entropy Analysis to Define Population Distributions. 
ERDC/CERL TR-18-22. 
L. Wes Burger. 2001. Quail management: issues, concerns, and solutions for public and private 
lands—a southeastern perspective. 
 

http://bit.ly/1K7WjO3
http://bit.ly/1K7WjO3
http://bit.ly/1K7WjO3


48 
 

Mark D. Smith and Loren W. Burger Jr. “Multiresolution approach to wildlife habitat modeling 
using remotely sensed imagery”, Proc. SPIE 5153, Ecosystems’ Dynamics, Agricultural Remote 
Sensing and Modeling, and Site-Specific Agriculture, (22 December 2003); 
https://doi.org/10.1117/12.506409.  
 
Merow, C., M. J. Smith, and J. A. Silander, Jr. 2013. A practical guide to MaxEnt for modeling 
species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1-12. 
 
Nenzen, H. K. and Araujo, M. 2011. Choice of threshold alters projections of species range shifts 
under climate change. Ecological Modelling 222:3346-3354.  
 
Norris, D. 2014. Model thresholds are more important than presence location type: Understanding 
the distribution of lowland tapir (Tapirus terrestris) in a continuous Atlantic forest of southeast 
Brazil. Tropical Conservation Science Vol.7(3):529-547. 
 
Noss, R. F., E.T. LaRoe III, and J.M. Scott. 1995. Endangered ecosystems of the United States: A 
preliminary assessment of loss and degradation. United States Department of Interior, National 
Biological Service, Biological Report 28, Washington, DC.  
 
Pearce, J. L., and M. S. Boyce. 2006. Modelling distribution and abundance with presence-only 
data. Journal of Applied Ecology 43:405-412.  
 
Pearce, J., and S. Ferrier. 2000. Evaluating the predictive performance of habitat models 
developed using logistic regression. Ecological Modelling. 133:225-245. 
 
Pearson, R. G., Raxworthy, C. J., Nakamura, M., Peterson, A. T. 2007. Predicting species 
distributions from small numbers of occurrence records: a test case using cryptic geckos in 
Madagascar. J. Biogeography 34:102-117.  
 
Phillips, S. J. 2017. A brief tutorial on Maxent.  Available from url: 
http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on January 11, 2021. 
 
Phillips, S. J., Dudik, M. 2008. Modeling of species distributions with Maxent: New extensions 
and a comprehensive evaluation. Ecography 31, 161-175. 
Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species 
geographic distributions. Ecological Modeling. 190:231-259. 
 
Phillips, S. J., M. Dudik, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick, and S. Ferrier. 2009. 
Sample selection bias and presence-only distribution models: implications for background and 
pseudo-absence data. Ecological Applications. 19: 181-197.  
 
Roseberry, J. L. 1993. Bobwhite and the ‘‘new’’ biology. Proceedings of the National Quail 
Symposium 3:16–20. 
Roseberry, B. G. Peterjohn, and W. D. Klimstra. 1979. Dynamics of an unexploited bobwhite 
population in deteriorating habitat. Journal of Wildlife Management 43:306–315. 
 
Sauer, J.R., D.K. Niven, J.E. Hines, D.J. Ziolkowski, Jr, K.L. Pardieck, J.E. Fallon, and W.A. 
Link. 2017. The North American Breeding Bird Survey, Results and Analysis 1966-2015. 
Version 2.07.2017 USGS Patuxent Wildlife Research Center, Laurel, MD.  
 

https://doi.org/10.1117/12.506409
http://biodiversityinformatics.amnh.org/open_source/maxent/


49 
 

Sauer, J. R., J. E. Hines, I. Thomas, J. Fallon, and G. Gough. 2000. The North American 
Breeding Bird Survey, Results and Analysis 1966–1999. Version 98.1, United States Geological 
Survey, Patuxent Wildlife Research Center, Laurel, Maryland. 
 
Schairer, G. L., R. H. Wynne, M. L. Fies, S. D. Klopfer. 1999. Predicting Landscape Quality for 
Northern Bobwhite from Classified Landsat Imagery. Proceedings of the Southeastern 
Association of Fish and Wildlife Agencies 53:243-256.  
 
Schotz, A.R. and M.S. Barbour. 2009. Ecological assessment and terrestrial vertebrate surveys for 
Black Belt Prairies in Alabama. Unpublished report submitted to the Alabama Department of 
Conservation and Natural Resources, Division of Wildlife & Freshwater Fisheries, Montgomery, 
Alabama. Alabama Natural Heritage Program, Auburn, Alabama. 139 pages. (report available at: 
http://www.alnhp.org/reports/Prairie_SWG_Final_Report.PDF) 
 
Stoddard, H. L. 1931. The Bobwhite Quail: Its Habits, Preservation, and Increase. Scribner’s, 
New York.  
 
Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240(4857):1285-1293. 
 
Syfert, M. M., Smith, M. J. and Coomes, D. A. 2013. The effects of sampling bias and model 
complexity on the predictive performance on maxent species distribution models. Plos One 
8:e55158.  
 
The National Bobwhite Technical Committee. 2011. Palmer, W.E., T.M. Terhune, and D.F. 
McKenzie (eds). The National Bobwhite Conservation Initiative: A range-wide plan for re- 
covering bobwhites. National Bobwhite Technical Committee Technical Publication, ver. 2.0, 
Knoxville, TN. 
 
Vance, D. R. 1976. Changes in land-use and wildlife populations in southeastern Illinois. Wildlife 
Society Bulletin 4:11–15. 
 
Wang, Y. H., K. C. Yang, C. L. Bridgman, and L. K. Lin. 2008. Habitat suitability modelling to 
correlate gene flow with landscape connectivity. Landscape Ecology.  
 
Zimmermann, N. E., T. C. Edwards, C. H. Graham, P. B. Pearman, and J. C. Svenning. 2010. 
New trends in species distribution modelling. Ecography 33:985-989.  
 
 


	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	1.1 Background
	1.2 Objectives
	1.3 Study Outline
	1.4 Literature Review

	Chapter 2: Methods
	2.1 Study Area
	2.2 Maxent
	2.3 Presence Data
	2.4 Environmental Layers
	2.5 Data Preparation
	2.6 Maxent Settings
	2.7 Running Maxent

	Chapter 3: Results
	3.1 Model Evaluation
	3.2 Variable Contribution
	3.3 Response Curves
	3.4 Likelihood Distribution

	Chapter 4: Discussion
	4.1 Implications for Variable Contribution
	4.2 Implications for Response Curves
	4.3 Implications for Likelihood Distribution
	4.4 Implications for Management
	Chapter 5: Conclusion

	Literature Cited

