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ABSTRACT 

Segmentation of hyperspectral images of sky/clouds is an important step in studying the 

scattering of sunlight by clouds. To achieve this challenging task of automatically analyzing the 

image collected by AUM Hyperspectral Imaging Team as part of an NSF grant, this thesis studies 

a combination of feature selection and clustering algorithms. Hyperspectral cameras are 

spectrometers which gather high resolution spectral information at each pixel of an image.  In 

contrast to RGB images, hyperspectral images contain many narrow wavelength bands. The 

Resonon PIKA XC2 hyperspectral camera used in this study for imaging sky and clouds has a 

spectral resolution of only 1.3 nm and produces spectra with 462 bands. This large number of 

bands, as opposed to the regular RGB color images, serves as features to the clustering analysis. It 

is a challenging task to determine the ground truth and we can use machine learning clustering 

algorithms with different settings to create alternative versions. More importantly, in this thesis, I 

was interested in which features would be the most interesting to keep for the ability to maximally 

reproduce the clustering results with fewer features. With feature selection, we can see which 

bands could be potentially excluded from future study due to their lack of similarity to the ground 

truth. The dataset used contained two hyperspectral images with clouds and clear-sky pixels in 

them. After feature selection applied to the first dataset image, we have bands 245, 175, and 269 

selected as they show the highest similarity of 96% to the 3-cluster ground truth. For 4 clusters, 

bands 190, 267, and 163 have a similarity of 95.72%. Lastly for 5 clusters, bands 268, 149, and 

193 have a similarity of 95.11%. When the same concept is applied to the other hyperspectral 

image, the results vary, but we conclude that wavelength region 741 – 758 nm (bands 267 – 280) 

might be a good choice for clustering since they are frequently selected in the feature selection 

process.  
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1. CHAPTER 1: INTRODUCTION TO HYPERSPECTRAL IMAGES 
 

The segmentation of hyperspectral sky/cloud images is a crucial process in examining 

sunlight scattering by clouds [4-7,18,24,28]. Hyperspectral imaging, renowned for capturing rich 

information, has gained popularity in climate change research. Notably, NASA's EMIT mission 

utilizes an advanced imaging spectrometer, showcasing the application of hyperspectral imaging 

in climate change analysis [22]. Facilitating the automatic analysis of images collected as part of 

an NSF grant [18] by the AUM Hyperspectral Imaging Team, this thesis explores the combination 

of clustering algorithms with feature selection [14,19,27] and cluster validity indices [1,15,25] to 

address this challenging task.  

Ordinary RGB cameras use a grid of colored filters superposed on top of the individual 

photodiodes comprising the camera’s light sensing array. Such an arrangement is referred to as a 

Bayer filter. The usual arrangement of filters within the grid is shown in Figure 1.1. The red, green, 

and blue channel counts for a given image pixel are determined by the response of a collection of 

photodiodes in close proximity to one another. Typical response curves for the colored filters are 

shown in Figure 1.2 [13]. Note the large overlap of the wavelength bands transmitted by the filters.  

 

 

 

 

Figure 1.1 Bayer filter grid of colored filters on sensor pixels. 
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Figure 1.2 Spectral response of a typical Bayer filter 

 

Hyperspectral cameras are spectrometers which gather high resolution spectral information 

at each pixel of an image.  The Resonon PIKA XC2 hyperspectral camera [26] used in this study 

has a spectral resolution of only 1.3 nm. High spectral resolution is made possible by the use of a 

PGP (prism-grating-prism) to decompose light passing through the slit of the spectrometer into its 

constituent wavelengths (see Figure 1.3 [8]).  In contrast to RGB images, hyperspectral images 

contain a large number of wavelength bands and the bands do not overlap. The PIKA XC2 

produces spectra with 462 bands. 
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Figure 1.3 Prism-grating-prism spectrometer 

 

Hyperspectral images are often referred to as “cubes” because they can be thought of as 

many two-dimensional gray scale images stacked on top of one another (see Figure 1.4 [12]). 
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Figure 1.4 Hyperspectral cube 

 

2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
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10.  
11.  

12. CHAPTER 2: DATA COLLECTION AND PRE-PROCESSING 
 

The Resonon Pika XC2 hyperspectral camera [26] is a scanning spectrometer that uses a 

“push-broom” method to produce images.  The camera must be panned across the target and the 

narrow individual images taken through the spectrometer slit stitched together to obtain a full 

image.  A 17 mm focal length camera lens with a fast focal-ratio of 1.4 was used in this study.  

Using that lens, the field of view in the long direction of the camera’s slit is 30.8 degrees.  The 

field of view along the short direction of the slit, called the integration field of view, is only 

0.71 mrad (see Figure 1.4, which was obtained from Resonon_Product_Catalog_June_2022 [26]). 

An image covering a 90-degree range in azimuth requires 4402 individual exposures.  Since each 

exposure contains 1600 spatial pixels, a complete 90-degree image has dimensions (1600 x 4402) 

spatial pixels x 462 wavelength bands. 

 

 

Figure 2.1 Field of view (FOV) and integration field of view (IFOV) 

 

The camera is attached to a stage that pans the camera across the target by turning the 

camera slowly around a vertical axis as exposures are accumulated (see Figure 2.2).  An Oben 

VH-R2 tilt head is used to keep the elevation of the camera constant during the scan.  This allows 

the solid angle subtended by each pixel in a sky image to be easily determined. 
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Figure 2.2 Camera stage and tilt head 

 

It is possible for the stage motor to step through small increments of the angle, so the 

individual exposures fit seamlessly side-by-side, creating a complete image. However, this process 

is very time consuming. Several minutes are required to collect images covering a reasonable field 

of view. Instead, the camera is panned continuously. In order to achieve an image that has the 

correct aspect ratio and the minimum amount of blurring due to the camera motion it is necessary 

to synchronize the rate at which the camera pans with the framerate (the rate at which the camera 

accumulates exposures). For our hyperspectral camera, the correct relationship between frame 

rate(FR) and scan rate(SR) is  

SR = 0.02035 FR 
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The scan rate (SR) is in units of degrees per second and the framerate (FR) is in units of frames 

per second. For sky images, a frame rate of 45 frames per second and a scan rate of 0.92 degrees 

per second are a good compromise between special resolution and the time required to acquire 

images.  The acquisition time for a full 90-degree image is about 1.6 minutes. This time scale is 

comparable to the time over which rapidly evolving clouds undergo significant changes. 

Because of large differences in the radiances coming from different sky regions, particular 

care must be taken in the choice of integration time (also called exposure time) to avoid the 

saturation of sensor pixels in the regions of bright clouds. A typical integration time is about 12 

milliseconds, but satisfactory integration times can range from about 8 to 15 milliseconds 

depending on sky conditions. 

As the image is being acquired, the Spectronon software which runs the camera builds a 

“waterfall” image by sequentially displaying the acquired frames as a horizontal line until 

eventually a depiction of the entire image is displayed. The displayed image is referred to as a 

render, because the hyperspectral image is rendered as an RGB image in which the channel counts 

at three select bands of the hyperspectral image are used to determine the values of R, G, and B. 

The default channels used to determine R, G, and B are at wavelengths of 643.1 nm, 548.8 nm, 

and 461.6 nm, however, the Spectronon software allows any three channels in the hyperspectral 

image to be used in displaying the render. By choosing certain channels, it is sometimes possible 

to bring our features in the hyperspectral image not readily apparent in the standard render. 

The CMOS detector of the Pika XC2 has a different sensitivity to light energy at different 

wavelengths. Also, the glass in the camera’s optics absorbs light energy differently at different 

wavelengths. As a result, the “raw” images acquired by the camera must be corrected for this 

instrument error to obtain images for which the channel counts are proportional to monochromatic 

radiance (the rate at which light energy at a particular wavelength is received per unit area per 

solid angle subtended by the region detected by the pixel). Resonon’s Spectronon software can be 

used to make the appropriate correction. A calibration file provided by the manufacturer of the 

camera is used in the image calibration process.  Figure 2.3 shows a comparison between the 

spectra of raw and radiance cloud images. 
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      Figure 2.3 Comparison between a raw spectrum and a radiance spectrum for a cloudy pixel. 

13.  
14.  
15.  
16.  
17.  
18.  
19.  
20.  
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CHAPTER 3: PREVIOUS WORK 
 

This thesis will explore several methods that have potential application in automated 

systems for determining the fraction of sky cover by cloud. Such systems are useful for solar 

energy engineers in making short term forecasts of available solar energy as well as in determining 

the solar energy potential of locations being explored as possible sites for solar energy collectors 

[3, 30]. The amount of sunlight available to plants for photosynthesis is strongly dependent on the 

amount of cloudiness, so a record of cloudiness is useful in agriculture and forest management [11, 

20]. Also, cloud fraction is often a required input into short-term weather forecast models, and a 

detailed and precise record of cloud cover is valuable to atmospheric scientists studying the effects 

of cloud cover on climate [2]. 

 

3.1 NSF-Funded Hyperspectral Image Segmentation Project 

This thesis is part of a National Science Foundation (NSF) - funded project being 

undertaken by the AUM Department of Computer Sciences and Computer Information Systems 

in conjunction with the University of North Georgia [18]. The project centers around the 

development of a real-time, three-layer framework for hyperspectral image segmentation using 

machine learning models and optimized for high-performance computation. 

Hyperspectral images have both high spatial and spectral resolution. Analysis of such 

images poses a significant computational challenge due to the enormous amount of data they 

contain. However, their rich information content makes them more useful to scientists compared 

to ordinary RBG images. By leveraging the power of high-performance computing tools and 

machine learning techniques, this project seeks to provide an efficient solution to the complex 

problem of hyperspectral image segmentation. The framework is constructed in a multi-layered 

design, where each subsequent layer enhances the accuracy of the results of the previous layers. 

One significant application of this project is the development of methods for the 

characterization of cloud climate using hyperspectral and multi-spectral imaging. Cloud fraction, 

the portion of the sky covered by cloud, is an important facet of cloud climate. To determine cloud 
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fraction, sky images must be accurately segmented into clouds and clear sky. Once a hyperspectral 

image has been segmented, the image’s spectral content can be used to determine the amount of 

solar radiation originating from scattering by cloud particles. 

A second application involving the segmentation of sky images is the forecasting of solar 

radiation. Short-term predictions of the shading of solar arrays by cloud requires the segmentation 

of multiple images in succession to predict cloud motion. 

The implementation of this project is broken into four distinct phases, with this thesis 

primarily contributing to the first two phases: 

Phase-1. Data Collection and Analysis 

Phase-2. Building Classification Models and Prototyping 

Phase-3. HPC Integration and Software Design 

Phase-4. Software Implementation, Testing, and Deployment 

 

3.2 Hyperspectral Image Classification Using Cluster Ensemble-Based Categorical Features 

As part of his image segmentation project, Giovanni Bellio's master’s thesis [6] proposes 

a unique approach to hyperspectral image pixel classification. The approach relies on a cluster-

ensemble-based categorical feature extractor and a categorical boosting classifier that utilizes these 

features. Instead of traditional feature selection, which can be computationally costly due to the 

high dimensionality of hyperspectral data, a sliding window technique was applied to generate a 

diverse set of clustering runs. By adopting clustering algorithms like K-means as preprocessing 

tools, Giovanni was able to simplify and quantize the hyperspectral image datasets, which 

generally lack categorical features. This preprocessing, performed through multiple clustering 

runs, converted each pixel's cluster membership into categorical 'super-features'. That is, the 

cluster indices produced from these runs were then employed as categorical features for the 

categorical-boosting classifier. This approach allows for a richer data representation by employing 
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multiple clusterings to augment the dataset, thus enhancing the classification accuracy of the 

boosting ensembles. 

Giovanni’s method is advantageous for the segmentation of high-resolution hyperspectral 

sky images which contain hundreds of features comprised of a sequence of narrow wavelength 

bands. Furthermore, his approach has the potential for easy integration into high-performance 

computing frameworks due to its inherent parallelism. This characteristic, coupled with its 

enhanced classification performance, makes it an appealing and effective strategy for 

hyperspectral image classification. Giovanni’s work provided several contributions to the overall 

NSF project, specifically assisting in the algorithm development for Phase 2 - Building 

Classification Models and Prototyping. It also resulted in a publication [7]. 

 

3.3 Impact of Feature Selection and Spectral Normalization on Hyperspectral Image 

Segmentation through Gray Level Image Thresholding 

In her undergraduate honors thesis, Derienne Black explored the effects of feature selection 

and spectral normalization on the segmentation of hyperspectral images [5]. Her study was 

conducted as part of the hyperspectral image segmentation project sponsored by NSF and focused 

on the application of thresholding techniques to gray level images. Binarization is not as powerful 

as the clustering algorithms used in the research this thesis builds upon, but Black's research 

focused on evaluating the effects of normalization on binarization. Her primary objective was to 

ascertain if normalizing the data by average radiance would enhance segmentation. 

Black used the project’s hyperspectral imaging system to capture hyperspectral sky images. 

Data at each image pixel comprises a calibrated spectrum across 462 narrow wavelength bands 

ranging from 400 to 1000 nm. The normalization process was carried out using the channel 

corresponding to a wavelength of 586 nm. The monochromatic radiance at that channel has been 

shown to be proportional to the spectrally averaged radiance over a wide variety of sky conditions. 

The normalized monochromatic radiance indicates how the energy content of the spectrum varies 

with wavelength. At a wavelength of 454 nm, the difference in normalized monochromatic 

radiance between cloud and clear sky pixels was found to be larger than at other wavelengths, so 
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normalized radiance at a wavelength of 454 nm was selected to produce gray level images for 

segmentation. 

Three distinct thresholding techniques were employed in the study: Otsu's method [23], 

Kapur's entropy thresholding [16], and Kittler-Illingworth minimum error thresholding [17]. 

Segmentation results were compared using Normalized Mutual Information (NMI) and the 

Adjusted Rand Index (ARI). 

Otsu's method, an automatic thresholding technique, calculates an optimal value to 

maximize the separability of foreground and background regions in an image. This method assigns 

pixels with intensity values above the threshold to the foreground and those below to the 

background, resulting in a binary image. Kapur’s entropy thresholding determines an optimal 

threshold by maximizing the binary image's entropy or information content and is primarily used 

for image segmentation. It divides the image into two classes based on a threshold value, then 

calculates the entropy of each class. The threshold value maximizing the total entropy is selected 

as optimal. Kittler-Illingworth thresholding minimizes the classification error between foreground 

and background pixels. This technique computes probabilities of the foreground and background 

for each threshold value and calculates the error. The optimal threshold corresponds to the lowest 

overall classification error. 

Ms. Derienne Black concluded her study by examining the suitability of NMI and ARI for 

assessing segmentation quality. She found NMI more appropriate for datasets with clusters of 

varying sizes, while ARI performed better for datasets with similar cluster sizes. Her selection of 

the Adjusted Rand Index (ARI) as the preferred method for calculating segmentation has been 

adopted in the current work as well. Her work contributed to the NSF project's Phase 1 - Data 

Collection and Analysis, particularly by evaluating the influence of data normalization and 

thresholding techniques on the segmentation of hyperspectral images. 
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CHAPTER 4: MACHINE LEARNING METHODS AND DATA 
ANALYSIS 

 

The methodology adopted in this thesis employs the K-Means clustering algorithm [14, 

19], the Adjusted Rand Index (ARI) [1,15,25], and sequential feature selection [9,10,14,21,27,29] 

to analyze two exemplary cloudy image patches from the hyperspectral image dataset that we 

collected. The aim is to identify the feature (wavelength/band), among the total of 462 bands in 

the hyperspectral images, that exhibits the highest similarity to the ground truth (the most accurate 

known label for each pixel in the images). That is, assuming that the ground truth segmentation is 

obtained by application of K-Means to the whole set of features, which few features could 

approximate the same partitioning of the image pixels. For example, one can test how well the 

clustering obtained when using the red and blue wavelengths/bands together matches with that of 

the ground truth.  

K-Means is an unsupervised machine learning algorithm that assigns data points to K 

clusters, where each data point belongs to the cluster with the nearest mean value. The Adjusted 

Rand Index (ARI) is a measure that quantifies the similarity between two data clusterings. Being 

adjusted means that the ARI score is corrected for chance (for example if K is set to the number 

of data points, then the uncorrected score would give 100% agreement). ARI score typically lies 

between 0 and 1 and can go slightly below 0 when two clusterings are in disagreement. A high 

negative value (near 1) is not easy to obtain and may indicate a bug or data leak.  

K-Means is one of the most popular clustering algorithms [14,19]. It is a simple to 

implement algorithm that can take a few lines of code, but it can help analyze the data by revealing 

its structure/groups/clusters. It is an unsupervised algorithm, which means it does not use class-

labels. We used Scikit-learn Python libraries for applying K-Means to our problem. Scikit-learn 

describes K-Means and its input-output arguments as follows [19].  
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from sklearn.cluster import KMeans 
import numpy as np 
X = np.array([[1, 2], [1, 4], [1, 0], 
              [10, 2], [10, 4], [10, 0]]) 
 
kmeans = KMeans(n_clusters=2, random_state=0, n_init="auto").fit(X) 
 
print(f"{X = }") 
 
print(kmeans.labels_) 
 
test_set = [[0, 0], [12, 3]] 
print(kmeans.predict(test_set)) 
 
print('centers = ', kmeans.cluster_centers_) 
 

 

In this example, our input dataset X contains 6 examples and 2 dimensions each. These 

points in 2D space will be replaced by points (corresponding to pixels) in 462-dimensional space. 

Kmeans will return cluster memberships as: [1 1 1 0 0 0].  

K-Means also returns the centroid coordinates, which could be useful in our research to 

know prototypical clear-sky and cloud hyperspectral signature (Refer to Figure 2.3). In this 

particular example, we have: 

centers = [[10.  2.] 
      [ 1.  2.]] 

 

For its application to our HSI (Hyperspectral image) data analysis, we used K-means 

clustering with K=3 for segmentation (considering clear-sky, thin-clouds, and clouds as the 

potential sources of clusters). We used sequential feature selection to pick the best bands (we 

picked the best three in our analysis), and rand-index for cluster validity index (to measure the 

match between the partitioning based on all the bands and the partitioning based on single bands). 

To apply these methodologies, an iterative analysis of two images is required. We use two 

sample images, R1 and R2, each of the size 401x402x462 (see Figure 3.1 and Figure 3.2). Initially, 

K-Means is applied to these images to establish the ground truth. The K parameter is set to three, 
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but we also tried two, four and five clusters to check our assumption of having three main classes 

in the images is right. The random_state parameter for K-Means is kept at zero for this experiment 

for reproducibility, but it can be altered as per requirement.  

The goal of this analysis is to identify which bands give the closest ARI score to the ground 

truth in our HSI images. Since HSI provides a wealth of spectral information per pixel, it leads our 

machine learning clustering methods to run on hundreds of wavebands and presents a challenge 

known as the "curse of dimensionality” [10,14], which requires employing feature selection 

algorithms to mitigate computational burdens and improve prediction accuracy. Band selection is 

a crucial process to optimize the use of the rich spectral information and sequential feature 

selection is an efficient algorithm that can be used to reduce redundancy among spectral bands 

while attempting to maintain the original information of the image [9,21,29]. 

Following the establishment of the ground truth, two arrays, ‘labels’ and ‘scores’, are 

initialized to record the labels of the data points and the overall partitioning’s similarity scores to 

the ground truth as each band is iterated. We need the labels to calculate the ARI scores, which are 

then saved in ‘scores’. In sequential feature selection, after the first band is selected, it stays in. 

Thus, for the second-best band, the search is for the feature that best complements the first/already 

selected feature to improve the ARI similarity score with the ground truth. Therefore, in the first 

pass all 462 bands are tested (K-Means and ARI) to identify the best band, in the second pass 461 

remaining bands are tested to identify the second band that complements the first one, and in the 

third pass, 460 remaining bands are tested to identify the third band that complements the first two. 

This is an O(n2) process if all bands were to be ranked but generally just a few features are needed.  

More specifically, the algorithm consists of two for-loops. The outer loop runs just a few 

times until sufficiently many features are selected. The goal of the inner loop is to iterate each 

band to compare which band helps obtain the most similarity to the ground truth (the band is tested 

along with the already selected features to see how much added benefit it gives): 
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#Input: cube[:num_rows, :num_cols, :462] 

#Output: selected_features[:3] 

 

gt = k_means.fit(cube).labels_ 

selected_features = [] 

num_bands = 462 

num_select = 3 

 

for best in range(num_select): 

    scores = zeros(num_bands) #initialize all scores to zero 

    for i in range(num_bands): 

        if i in selected_features: 

            continue  #skip already selected features 

 

        testing = selected_features + [i] 

        data = cube[:,:,testing].reshape(num_rows*num_cols,1) 

        testing_partition = k_means.fit(one_band).labels_ 

   scores[i] = adjusted_rand_score(gt, testing_partition) 

 best_band = argmax(scores) #find the best band 

 selected_features.append(best_band)  

   

 

It is a Python implementation detail, but it is important to note that we used ‘testing’ as a 

new set of features/bands to test its suitability for K-Means to approximate the ground_truth. Note 

that we used ‘+’ operator, otherwise ‘.copy()’ should be used, to avoid mutating the 

selected_features list. 
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Figure 4.1 The hyperspectral R1-image 

 

Figure 4.2 The hyperspectral R2-image 
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21. CHAPTER 5: EXPERIMENTAL RESULTS 
 

In this chapter, we will discuss the effects of sequential feature selection on the quality of 

the clustering. As explained in Chapter 3, ARI is used to measure the quality of a feature subset, 

measuring the match between clustering obtained when using this subset and the ground truth 

obtained by clustering the image with all the 462 bands. Table 5.1 and table 5.2 show the results 

of the algorithm. In addition, Figures 5.1 through 5.21 consist of all of R1’s experiments that 

correspond to Table 5.1, and Figures 5.22 to 5.39 correspond to Table 5.2.  

Let us first discuss what Table 5.1 and Table 5.2 show. These tables contain the main 

results of the experiments on the two exemplary HSI images, Figures 3.1 and 3.2, respectively. 

The row shows which band is the highest result for that certain pass in addition to its wavelength 

and its score. The column shows the number of clusters for that particular picture. For the first pass 

of three clusters, the result shows band-245 (corresponding to 712.79 nm wavelength) has a 

93.00% similarity to the 3-cluster ground truth (the clusterings of the ground-truth and band-245 

are shown in Figure 5.1 and Figure 5.2, respectively).  

 

Figure 5.1 The 3-cluster ground truth for the R1-image 
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The partitioning shown in Figure 5.1 is well approximated by band-245 as can be seen in 

Figure 5.2.  In order to visually compare Figure 5.1 and Figure 4.2 and to see that they are similar 

to each other, we need to make the cluster colorings correspond to each other. There are three 

clusters, hence three different colors to distinguish them. Different colors represent different 

clusters, but these color assignments are arbitrary.  

When K-Means is applied to an image, it goes through every pixel and labels them as either 

this pixel is with cluster 0, cluster 1, or cluster 2 based on where the cluster centroids converged 

in the training (fit). However, as K-Means clustering is an unsupervised process, it is hard to 

guarantee the cluster colors correspond to each other. As the algorithm starts with random centers, 

the labelling is arbitrary; that is, next time we run K-Means on the same exact data, it can number 

these clusters differently (and will end up with a slightly different partitioning anyway in most 

cases – that is why scikit-learn runs K-Means a number of times and reports the best run).  

In addition to the difficulty of visually quantifying the agreement between two clusterings, 

we also face the difficulty of having 462 of such clusterings to compare with the ground truth. 

Therefore, we used ARI scores for individual bands and picked the one that has the maximum 

score. Figure 4.3 shows that ARI plot.  

 



 
 

21 
 

 

Figure 5.2 The 3-cluster partitioning with band-245 on the R1-image.  

 

 

Figure 5.3 ARI-scores of the first pass for the 3-cluster feature selection on the R1-image. 
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This feature selection process needs to continue for selecting the second-best feature and 

then the third-best feature such that they have the maximal performance when used together. As 

the number of figures to show how these decisions affect the clusterings is large, we created Table 

5.3 and Table 5.4 to show which figure explains what.  

 

K for Ground Truth First Pass Second Pass Third Pass 

3 Clusters band-245 

(712.79 nm) 

93.00% Similarity 

band-175 

(619.49 nm) 

93.39% Similarity 

band-269 

(744.91 nm) 

96.00% Similarity 

4 Clusters band-190 

(639.43 nm) 

91.42% Similarity 

band-267 

(744.91 nm) 

94.92% Similarity 

band-163 

(603.55 nm) 

95.72% Similarity 

5 Clusters band-268 

(712.79 nm) 

90.55% Similarity 

band-149 

(584.99 nm) 

94.57% Similarity 

band-193 

(643.42 nm) 

95.11% Similarity 

 

Table 5.1 Summary of the feature selection results on the R1-image. 

 

Table 5.1 shows that when we used the 3-cluster ground-truth obtained on all the bands is 

best matched by band-245, and with the selection of the second band (band-175) this match 

percentage (ARI-score) goes up to 93.39%, and finally when band-269 is selected then the overall 

ARI (using bands 245, 175, and 269 together) goes up to 96%. A similar table is provided for the 

HSI image R2 in Table 5.2.  Also, to find the clustering results on the R1-image and ARI-plots, 

the reader refers to Table 5.3 as the map of the figures. Table 5.4 serves the same purpose for 

following the results on the R2-image.  
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K for Ground Truth First Pass Second Pass Third Pass 

3 Clusters band-118 

543.96 nm 

86.78% Similarity 

band-133 

563.8 nm 

89.88% Similarity 

band-280 

759.6 nm 

91.35% Similarity 

4 Clusters band-134 

562.12 nm 

88.06% Similarity 

band-175 

619.49 nm 

90.65% Similarity 

band-280 

759.6 nm 

91.63% Similarity 

5 Clusters band-175 

619.49 nm 

87.05% Similarity 

band-178 

623.47 nm 

89.71% Similarity 

band-33 

432.47 nm 

91.42% Similarity 

  

Table 5.2 Summary of the feature selection results on the R2-image. 

 

K for 

Ground 

Truth 

Ground 

Truth 

Pass-1 

Clusters 

Pass-1 

Scores 

Pass-2 

Clusters 

Pass-2 

Scores 

Pass-3 

Clusters 

Pass-3 

Scores 

3 Clusters 5.1 5.2 5.3 5.4 5.5 5.6 5.7 

4 Clusters 5.8 5.9 5.10 5.11 5.12 5.13 5.14 

5 Clusters 5.15 5.16 5.17 5.18 5.19 5.20 5.21 

 

Table 5.3 Figure-navigation table for the results on the R1-image. 
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K for 

Ground 

Truth 

Ground 

Truth 

Pass-1 

Clusters 

Pass-1 

Scores 

Pass-2 

Clusters 

Pass-2 

Scores 

Pass-3 

Clusters 

Pass-3 

Scores 

3 Clusters 5.22 5.23 5.24 5.25 5.26 5.27 5.28 

4 Clusters 5.29 5.30 5.31 5.32 5.33 5.34 5.35 

5 Clusters 5.36 5.37 5.38 5.39 5.40 5.41 5.42 

 

Table 5.4 Figure-navigation table for the results on the R2-image. 

 

 

Figure 5.4 The 3-cluster partitioning with band-245 and band-175 on the R1-image. 
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As can be clearly seen from Figures 5.4 and 5.6, the clusterings match ground truth better 

with the selection of the second and third features into the “selected_features” subset, respectively.  

 

 

Figure 5.5 ARI-scores of the second pass for the 3-cluster feature selection on the R1-image. 
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Figure 5.6 The 3-cluster partitioning with band-245, band-175, and band-269 on the R1-image. 

 

Figure 5.7 ARI-scores of the third pass for the 3-cluster feature selection on the R1-image. 
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Once the labels are obtained from both sides, the algorithm performs sequential feature 

selection using adjusted rand index to compare labels. The relationship between each band and the 

ground truth in the first pass is shown by Figure 5.3. 

A significant improvement is shown when we apply the second pass, especially for the first 

100 bands. When band-245 combined with band-175 it achieves a 93.39% score, that is 0.39% 

increase compared to the first pass. Bands after 400 show an increase in scores, unlike the first 

pass. In the third pass for three cluster partitioning, the scores started higher than the second pass, 

but they maintained an inverse relationship as the score increases as passes are being iterated and 

a decrease of scores from the first pass, band-269 perform best with 96.00% score whereas it 

performed 86.53% in the first pass.  

For the four clusters, the algorithm finds band-190 has the highest score of 91.42%. 

However, Figure 5.3 and Figure 5.10 have similar pattern to each other, Figure 5.10 shows top 

scores, which are more consistent from band-100 to band-400. Four clusters generally produce 

better results.  
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22. CHAPTER 6: CONCLUSION 
 

In conclusion, this study reaffirms the remarkable capacity of hyperspectral images for 

atmospheric cloud segmentation when leveraged with effective machine learning methodologies. 

This thesis demonstrates the use of K-Means clustering algorithm, the Adjusted Rand Index (ARI) 

cluster validity index for comparing two clusterings, and sequential feature selection techniques 

for dimensionality reduction, all combined for identifying the optimal wavelengths for 

atmospheric cloud detection and clustering. In particular, K-means have proven beneficial for 

segmenting images into similarity-based pixel groups. Nevertheless, the high dimensionality of 

hyperspectral datasets presents a significant challenge.  

By employing feature selection algorithms, we can effectively prune redundant 

information while preserving the integrity of the clustering results to the maximum extent possible. 

We can assess this consistency using the rand-index, which ranks the bands in order of their 

importance. Our results highlight the wavelength region 741 – 758 nm (bands 267 – 280) as a 

potentially effective choice for clustering, given their frequent selection during the feature 

selection process. Furthermore, the synergistic relationship observed among the top three bands, 

specifically bands 118, 133, and 280, provides a higher ARI, reflecting their complementarity.  

As future work, we should understand the initial dip observed within the first 100 bands 

during the first and second passes. By investigating these anomalies, we can further refine our 

approach and improve our understanding of these complex hyperspectral datasets. 
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APPENDIX: CHAPTER 5 FIGURES 
 

This appendix lists the figures that can be navigated by Tables 5.3 and 5.4 to follow the 

results obtained on hyperspectral image samples called R1 and R2, respectively.  

Figure 5.8 below shows Ground truth image for four clusters. Which is well approximated 

by band-190 for the first pass Shown in Figure 5.9. which is then applied by the band-267 and 

band-163 for the second and third pass, The respective ARI scores are shown in Figure 5.10, Figure 

5.12 and Figure 5.14. 

 

Figure 5.8 The 4-cluster ground truth for the R1-image. 
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Figure 5.9 The 4-cluster partitioning with band-190 on the R1-image. 

 

Figure 5.10 ARI-scores of the first pass for the 4-cluster feature selection on the R1-image. 
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Figure 5.11 The 4-cluster partitioning with band-190 and band-267 on the R1-image. 

 

Figure 5.12 ARI-scores of the second pass for the 4-cluster feature selection on the R1-image. 
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Figure 5.13 The 4-cluster partitioning with band-190 and band-267 and band-163 on the R1-
image. 

 

Figure 5.14 ARI-scores of the third pass for the 4-cluster feature selection on the R1-image. 
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Similarly, the 5-cluster ground truth is well approximated by the band-268, band-149, and 

band-193 and respective partitioning and the ARI plots are shown in the Figures below. Table 5.3 

gives a short idea about the Figures for the clusters and scores on the R1-image.  

 

 

Figure 5.15 The 5-cluster ground truth for the R1-image. 
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Figure 5.16 The 5-cluster partitioning with band-268 on the R1-image. 

 

Figure 5.17 ARI-scores of the first pass for the 5-cluster feature selection on the R1-image. 
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Figure 5.18 The 5-cluster partitioning with band-268 and band-149 on the R1-image. 

 

Figure 5.19 ARI-scores of the second pass for the 5-cluster feature selection on the R1-image. 
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Figure 5.20 The 5-cluster partitioning with band-268, band-149 and band-193 on the R1-image. 

 

 

Figure 5.21 ARI-scores of the third pass for the 5-cluster feature selection on the R1-image. 
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The figures below from 5.22 to 5.28 show 3-cluster partitioning and the identified bands 

(band-118, band-133 and band-280) for the first, second and third pass and the respective ARI 

plots. Table 5.4 is the Navigation table for the Figures for the results on the R2-image. 

 

 

Figure 5.22 The 3-cluster ground truth for the R2-image. 
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Figure 5.23 The 3-cluster partitioning with band-118 on the R2-image. 

 

 

Figure 5.24 ARI-scores of the first pass for the 3-cluster feature selection on the R2-image. 
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Figure 5.25 The 3-cluster partitioning with band-118 and band-113 on the R2-image. 

 

 

Figure 5.26 ARI-scores of the second pass for the 3-cluster feature selection on the R2-image. 

 



 
 

44 
 

 

Figure 5.27 The 3-cluster partitioning with band-118, band-113 and band-280 on the R2-image. 

 

 

Figure 5.28 ARI-scores of the third pass for the feature selection on the R2-image. 
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The four-cluster ground truth and the partitioning with band-134 then bands-175 and 280 

are shown in Figure 5.30, Figure 5.32 and Figure 5.34 and the ARI scores for the first, second and 

third pass are shown in Figures 5.31, 5.33, 5.35 respectively. We can see the ARI plot for the 

second pass in Figure 5.33 and the third pass in Figure 5.35 are quite similar.  

 

 

Figure 5.29 The 4-cluster ground truth for the R2-image. 
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Figure 5.30 The 4-cluster partitioning with band-134 on the R2-image. 

 

Figure 5.31 ARI-scores of the first pass for the 4-cluster feature selection on the R2-image. 
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Figure 5.32 The 4-cluster partitioning with band-134 and band-175 on the R2-image. 

 

Figure 5.33 ARI-scores of the second pass for the 4-cluster feature selection on the R2-image. 
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Figure 5.34 The 4-cluster partitioning with band-134, band-175 and band-280 on the R2-image. 

 

Figure 5.35 ARI-scores of the third pass for the 4-cluster feature selection on the R2-image. 
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Here, Figure 5.36 is a 5-cluster ground truth for R2-image, In the first pass band-175 is 

applied which is shown in Figure 5.37 the ARI plot for the first pass in Figure 5.38 shows gradual 

increase in the first 200 bands. Whereas in the Figure 5.39 and 5.41 when the band-178 and band-

33 is applied for the second and third pass, the ARI plot in the Figure 5.40 and Figure 5.42 shows 

score decreasing at the beginning of the plot until 20 to 50 bands and shown a gradual rise and 

shown constant almost to end of the plot. 

 

 

Figure 5.36 The 5-cluster ground truth for the R2-image. 
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Figure 5.37 The 5-cluster partitioning with band-175 on the R2-image. 

 

 

Figure 5.38 ARI-scores of the first pass for the 5-cluster feature selection on the R2-image. 
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Figure 5.39 The 5-cluster partitioning with band-175 and band-178 on the R2-image. 

 

 

Figure 5.40 ARI-scores of the second pass for the 5-cluster feature selection on the R2-image. 
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Figure 5.41 The 5-cluster partitioning with band-175, band-178 and band-33 on the R2-image. 

 

 

Figure 5.42 ARI-scores of the third pass for the 5-cluster feature selection on the R2-image. 




